Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faulty body clock leads to obesity and diabetes

22.04.2005


Obesity and diabetes in both adults and children are rising at alarming rates and a wide range of culprits -- super-sized food portions, lack of exercise due to television, computers, suburban sprawl and loss of gym classes, high-fat and fast foods, sugar-laden drinks and psychological trauma -- have been blamed.



Now researchers from Northwestern University and Evanston Northwestern Healthcare (ENH) have pinpointed something deep within the brain and other tissues that plays an important role in the struggle to maintain a healthy weight: the body’s 24-hour internal clock. The research team, led by an endocrinologist and a circadian rhythms expert, has shown that a faulty or misaligned body clock, which regulates both sleep and hunger, can wreak havoc on the body and its metabolism, increasing the propensity for obesity and diabetes.

The findings will be published online April 21 by the journal Science.


"Just as there is a mechanism that makes the heart beat, there is a clock that functions in many different parts of the body to regulate many different systems," said Joseph Bass, M.D., senior author and assistant professor of medicine and neurobiology and physiology at Northwestern and head of the division of endocrinology and metabolism at ENH.

"We don’t know too much about how clocks control eating and metabolism in normal individuals, but now we have shown that weight gain and abnormalities in metabolism, including diabetes, result if this internal timepiece is malfunctioning. The body clock is clearly controlling the elaborate brain signaling system that regulates appetite."

"We’ve demonstrated that an animal model with a known circadian disregulation -- a mouse with a mutant Clock gene and thus an imprecise body clock -- has metabolic problems, at least obesity and signs of the metabolic syndrome," said circadian rhythm expert Fred W. Turek, lead author on the paper and professor of neurobiology and physiology in Northwestern’s Weinberg College of Arts and Sciences.

"This provides new genetic evidence that physiologic outputs of the biological clock, sleep and appetite are interconnected at the molecular and behavioral levels, yielding implications on the role of internal biological timing in optimizing strategies to reduce and sustain weight loss resulting from both medical and lifestyle modifications."

The research team also includes Joseph S. Takahashi, Walter and Mary Elizabeth Glass Professor in the Life Sciences and a Howard Hughes Medical Institute investigator at Northwestern, who led the team that cloned the first mammalian circadian gene, Clock, in 1997. This discovery provided the genetic model critical to this study reported in Science.

The scientists exposed mice to regular and high-fat diets and compared the response of the mutant animals to the response of the normal animals. They discovered that the animals with the Clock mutation were unable to regulate their body weight in the presence of either diet. The effect of the Clock mutation on body weight in animals fed a regular diet was similar in magnitude to the effect of a high-fat diet in normal mice. When the Clock mutant animals were fed a high-fat diet, the combined effect of diet plus mutation led to the most severe alteration in body weight and changes in metabolism. The obese mice showed metabolic abnormalities in insulin secretion and the ability of the liver to handle sugar.

Obesity is associated with metabolic and cardiovascular disorders often referred to as the metabolic syndrome, which increases an individual’s risk of developing a serious disease, said Bass and Turek. In addition to excess body weight, factors include high blood pressure, high insulin levels and one or more abnormal cholesterol levels and, at the whole animal level, an inability to expend excess calories consumed. Robert H. Eckel, M.D., an author on the Science paper and professor of medicine at the University of Colorado at Denver and Health Sciences Center and president-elect of the American Heart Association, and his colleagues found the Clock mutant animals had reduced energy dissipation despite positive energy balance, compounding the obesity phenotype in these animals.

"Our findings lead to provocative questions that require further investigation," said Bass. "Is it possible that sleep loss or a change in circadian rhythms might exacerbate problems in regulating appetite? It may be a question of not only how much you eat but what time of day you eat and how that affects the body. Are you eating at a time of day when your system is internally aligned to metabolize the food?"

Approximately 18 million people in the United State have diabetes and nearly two-thirds of adults are overweight, which includes 30 percent who are obese. Together, diabetes and obesity result in almost 200,000 deaths annually and exert a devastating social and economic toll due to complications including blindness, kidney failure, heart disease and stroke.

Biological clocks function in the brain as well as lung, liver, heart and skeletal muscles. They operate on a 24-hour, circadian (Latin for "about a day") cycle that governs functions like sleeping and waking, rest and activity, fluid balance, body temperature, cardiac output, oxygen consumption and endocrine gland secretion.

"The body clock regulates the time we go to bed, the time we get up and the time we get hungry -- these are biological principles not psychological factors," said Bass. "This internal drive is a fundamental system that is important to health."

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Health and Medicine:

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>