Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings about anti-cancer agent could make it more effective

20.04.2005


New research has revealed the power behind an anti-tumor agent being studied in the laboratory. The findings, by scientists at Wake Forest University School of Medicine and the National Cancer Institute, could lead to more effective treatment strategies for cancer.



"Our new understanding of how this agent works could help us combine treatments to reach multiple targets," said William Gmeiner, Ph.D., professor of cancer biology at Wake Forest’s School of Medicine, which is part of Wake Forest University Baptist Medical Center.

Gmeiner is working under a grant from the National Cancer Institute (NCI) to investigate the agent’s potential for treating human cancer. His most recent findings reveal how the compound – called FdUMP[10] – works to damage DNA, the genetic "code" found in all cells.


The results were reported in Anaheim, Calif., today at the American Association for Cancer Research’s 96th Annual Meeting and will be published June 1 in Cancer Research.

Eleven years ago, Gmeiner set out to develop a compound that would be more effective and have fewer side effects than fluorouracil, one of the most common chemotherapy drugs for prostate cancer. Laboratory studies show that FdUMP[10] is 300 to 400 times more effective than fluorouracil at killing cancer cells and less damaging to normal cells. In addition to potential for treating prostate cancer, the compound has also proven effective for leukemia and colon cancer cells.

"Now, we have more information about how it’s actually killing cancer cells," said Gmeiner. "We knew that it damaged DNA but did not know the mechanism. Our latest research helped us learn what target we’re hitting."

Gmeiner designed the agent to inhibit an enzyme (thymidylate synthase) that plays a major role in the rapid growth and division of cancer cells. But his recent research shows that the agent also acts on another enzyme (topoisomerase) that helps cancer cells replicate.

"Inhibiting topoisomerase causes DNA strands to break, which is an important mechanism that leads to cell death," said Gmeiner.

Knowing more about how the agent works means that doctors could combine it with other drugs to reach multiple treatment targets. For example, FdUMP[10] could possibly be used in combination with drugs that employ other mechanisms to kill cells.

"We may be able to combine it with other treatments for greater effectiveness," said Gmeiner. "There are likely novel combinations that we wouldn’t have envisioned before this study."

Knowing more how the compound works would also allow scientists to monitor its effectiveness during treatment. Gmeiner said that if the compound continues to show promise in the laboratory, it could be tested in humans within a few years. The compound is licensed to AVI, a biopharmaceutical company.

Gmeiner’s co-researchers are Zhi-Yong Liao¬, Ph.D., Olivier Sordet, Ph.D., Hong-Liang Zhang, Ph.D., Glenda Kohlhagen, Ph.D., Smitha Antony, Ph.D., and Yves Pommier, M.D., Ph.D., all with the National Cancer Institute at the time of the research.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>