Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach to cancer treatment shown to be highly effective

19.04.2005


Attacking novel S1P target eliminates cancerous tumors in some cases



An antibody developed by San Diego-based Lpath Therapeutics, Inc. could someday treat many of the deadliest solid and liquid tumors. This unique monoclonal antibody, called SphingomabTM, was tested in several animal models of human cancer and was shown to significantly retard cancer growth on a consistent basis; in some cases, it eliminated the tumor altogether.

According to Roger Sabbadini, Founder and Chief Scientific Officer of Lpath Therapeutics, the company has developed a monoclonal antibody against sphingosine-1-phosphate (S1P) and has validated S1P as a therapeutic target for cancer. Lpath is now preparing to seek FDA approval for human trials.


The results of two studies supporting this novel approach to cancer therapy were released at the 96th Annual Meeting of the American Association for Cancer Research in Anaheim, California on April 18. One of the studies was presented by Gordon Mills, M.D., Ph.D., of The University of Texas M. D. Anderson Cancer Center. Dr. Mills has pioneered the study of the important role that lysolipids (like S1P) play in the growth and metastasis of cancer cells.

According to Dr. Mills, the most deadly, multi-resistant cancers--including lung, breast, melanoma, and ovarian cancers--responded well to the SphingomabTM approach of targeting S1P. The SphingomabTM treatment not only blocked the effects of S1P on the cancer cells themselves, but also prevented tumor angiogenesis, which is the formation of new blood vessels that feed the growing tumor.

Lpath Therapeutics believes that interfering with sphingolipid function can result in clinically relevant therapeutic outcomes. Sphingolipids are structural and multifunctional lipid mediators largely involved in signaling activities required for normal cellular function. However, sphingolipids can become dysfunctional and thereby contribute directly to the pathophysiology of cancer, inflammation, and cardiovascular diseases.

Lpath Therapeutics, Inc. was founded in 1998 at San Diego State University based on the work of Dr. Sabbadini in the area of sphingolipid research. Lpath initially focused on the role of sphingolipids in cardiovascular disease and later expanded its research around sphingolipids to treat a broad range of diseases, including cancer.

Dr. Roger Sabbadini | EurekAlert!
Further information:
http://www.Lpath.com

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>