Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology helps Stanford shed new light on coronary bypass surgery

13.04.2005


On March 31, Joel Dyels celebrated his 72nd birthday by having coronary bypass surgery at Stanford Hospital. He also became the third patient at Stanford - and in the United States - to benefit from a new imaging system that lets doctors see the blood pathways they have created while the patient’s chest is still open.



Until now, doctors were almost never able to confirm whether bypass surgery had been successful while the patient was still on the operating table. In most cases, only after the chest had been closed could doctors get an image of the heart and see whether blood was flowing through the newly created vessels.

"The new technology now is just fantastic," Dyels said. He went home five days after his surgery, which was performed by Robert Robbins, MD, professor and chair of cardiothoracic surgery at the Stanford University School of Medicine. "Anything I can do to help advance the technology is great."


This new technique has "turned on the lights in the surgical suites," said Peter Fitzgerald, MD, PhD, associate professor of cardiovascular medicine. Fitzgerald and his colleagues Scott Mitchell, MD, professor of cardiothoracic surgery, and assistant professor Marc Pelletier, MD, used the new technology in surgery for the first time in the United States on March 16.

The technology, called the SPY Intra-operative Imaging System, was approved in January by the U.S. Food and Drug Administration for use in coronary artery bypass surgery, the most common open-heart surgery in the country with more than 300,000 patients undergoing the procedure every year. The system, made by Novadaq Technologies, has been used successfully for several years in Asia, Europe and Canada, where Pelletier had used it on a number of occasions as a cardiac surgeon at the University of Toronto. Fitzgerald was instrumental in bringing the system to the United States. Both he and Robbins are on Novadaq’s scientific board.

Coronary artery bypass is done when blood flow to the heart is impaired because of blocked vessels that can’t be unclogged through drugs, mechanical scraping or the use of a stent to hold an obstructed artery open. The procedure involves grafting vessels from other parts of the body to create alternative conduits of blood flow to the heart. Traditionally the grafts are created from leg veins, but surgeons now frequently use arteries from the forearm and thorax.

"When the patient is open in the operating room and the surgeons have spent all this time and technical skill to restore blood flow for the patient, they look at the heart as it starts beating and see if all of the grafts look fine," explained Fitzgerald. "But this is without any objective criteria."

Around 5 to 8 percent of the time, he said, a graft that initially looked fine doesn’t work well. This can lead to unsatisfactory results and sometimes may require another procedure such as coronary stenting or repeat coronary bypass surgery. What surgeons have needed is the ability to see whether blood was flowing so that any needed corrections could be made on the spot. Until now, there have been few good options.

The SPY system uses a fluorescent green dye that attaches to proteins in the blood and emits light when stimulated by a very low-energy laser. The technique does not heat up heart tissue and does not pose any risk to the staff in the operating room. The injected dye lights up blood flowing through the veins and arteries in real time, an action that can be projected on a screen and saved.

This new technology provides in several minutes the same information gleaned from the current gold standard for visualizing coronary artery blockages: the angiogram. An angiogram uses X-rays and a contrast dye that is injected into the heart via a thin, flexible tube inserted in the arm or leg. The procedure is almost always performed after surgery, sometimes hours later or even the next day. Fitzgerald said an angiogram can be done during surgery, but it’s time-consuming, cumbersome and exposes everyone in the operating room to X-rays.

"It would be ideal if the surgeons could see what they are doing so they don’t close the chest being one conduit short," said Fitzgerald. "Now for the first time the surgeons can take a picture with a direct way to assess how efficient their procedure has been."

As a cardiac surgeon, Pelletier said he appreciated having the capability to see any imperfections in the grafts during surgery and make the necessary corrections. "Spending a few extra minutes during a four-hour operation can have benefits to the patient that will last for years," Pelletier said.

With the new capability at Stanford, a team of cardiologists and heart surgeons is spearheading a large nationwide clinical trial to systematically assess the effectiveness of SPY as well as compare it with the other ways of assessing blood flow during surgery. The research team will also track and report on how often grafts are not optimal on the first try.

Beyond the FDA-approved use in visualizing cardiac bypass graft function, Fitzgerald is hopeful that the technology will inspire other advances.

"Every time you have a new diagnostic tool, it stimulates new technology for therapy," Fitzgerald said, pointing to colonoscopy as an example. "It wasn’t until we had a video camera illuminating the inside of the gut that we learned how to take out polyps and learned to stage colorectal cancer," he explained. "We finally turned on the light inside. This is the same thing."

Mitzi Baker | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Health and Medicine:

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>