Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology helps Stanford shed new light on coronary bypass surgery

13.04.2005


On March 31, Joel Dyels celebrated his 72nd birthday by having coronary bypass surgery at Stanford Hospital. He also became the third patient at Stanford - and in the United States - to benefit from a new imaging system that lets doctors see the blood pathways they have created while the patient’s chest is still open.



Until now, doctors were almost never able to confirm whether bypass surgery had been successful while the patient was still on the operating table. In most cases, only after the chest had been closed could doctors get an image of the heart and see whether blood was flowing through the newly created vessels.

"The new technology now is just fantastic," Dyels said. He went home five days after his surgery, which was performed by Robert Robbins, MD, professor and chair of cardiothoracic surgery at the Stanford University School of Medicine. "Anything I can do to help advance the technology is great."


This new technique has "turned on the lights in the surgical suites," said Peter Fitzgerald, MD, PhD, associate professor of cardiovascular medicine. Fitzgerald and his colleagues Scott Mitchell, MD, professor of cardiothoracic surgery, and assistant professor Marc Pelletier, MD, used the new technology in surgery for the first time in the United States on March 16.

The technology, called the SPY Intra-operative Imaging System, was approved in January by the U.S. Food and Drug Administration for use in coronary artery bypass surgery, the most common open-heart surgery in the country with more than 300,000 patients undergoing the procedure every year. The system, made by Novadaq Technologies, has been used successfully for several years in Asia, Europe and Canada, where Pelletier had used it on a number of occasions as a cardiac surgeon at the University of Toronto. Fitzgerald was instrumental in bringing the system to the United States. Both he and Robbins are on Novadaq’s scientific board.

Coronary artery bypass is done when blood flow to the heart is impaired because of blocked vessels that can’t be unclogged through drugs, mechanical scraping or the use of a stent to hold an obstructed artery open. The procedure involves grafting vessels from other parts of the body to create alternative conduits of blood flow to the heart. Traditionally the grafts are created from leg veins, but surgeons now frequently use arteries from the forearm and thorax.

"When the patient is open in the operating room and the surgeons have spent all this time and technical skill to restore blood flow for the patient, they look at the heart as it starts beating and see if all of the grafts look fine," explained Fitzgerald. "But this is without any objective criteria."

Around 5 to 8 percent of the time, he said, a graft that initially looked fine doesn’t work well. This can lead to unsatisfactory results and sometimes may require another procedure such as coronary stenting or repeat coronary bypass surgery. What surgeons have needed is the ability to see whether blood was flowing so that any needed corrections could be made on the spot. Until now, there have been few good options.

The SPY system uses a fluorescent green dye that attaches to proteins in the blood and emits light when stimulated by a very low-energy laser. The technique does not heat up heart tissue and does not pose any risk to the staff in the operating room. The injected dye lights up blood flowing through the veins and arteries in real time, an action that can be projected on a screen and saved.

This new technology provides in several minutes the same information gleaned from the current gold standard for visualizing coronary artery blockages: the angiogram. An angiogram uses X-rays and a contrast dye that is injected into the heart via a thin, flexible tube inserted in the arm or leg. The procedure is almost always performed after surgery, sometimes hours later or even the next day. Fitzgerald said an angiogram can be done during surgery, but it’s time-consuming, cumbersome and exposes everyone in the operating room to X-rays.

"It would be ideal if the surgeons could see what they are doing so they don’t close the chest being one conduit short," said Fitzgerald. "Now for the first time the surgeons can take a picture with a direct way to assess how efficient their procedure has been."

As a cardiac surgeon, Pelletier said he appreciated having the capability to see any imperfections in the grafts during surgery and make the necessary corrections. "Spending a few extra minutes during a four-hour operation can have benefits to the patient that will last for years," Pelletier said.

With the new capability at Stanford, a team of cardiologists and heart surgeons is spearheading a large nationwide clinical trial to systematically assess the effectiveness of SPY as well as compare it with the other ways of assessing blood flow during surgery. The research team will also track and report on how often grafts are not optimal on the first try.

Beyond the FDA-approved use in visualizing cardiac bypass graft function, Fitzgerald is hopeful that the technology will inspire other advances.

"Every time you have a new diagnostic tool, it stimulates new technology for therapy," Fitzgerald said, pointing to colonoscopy as an example. "It wasn’t until we had a video camera illuminating the inside of the gut that we learned how to take out polyps and learned to stage colorectal cancer," he explained. "We finally turned on the light inside. This is the same thing."

Mitzi Baker | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>