Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology helps Stanford shed new light on coronary bypass surgery

13.04.2005


On March 31, Joel Dyels celebrated his 72nd birthday by having coronary bypass surgery at Stanford Hospital. He also became the third patient at Stanford - and in the United States - to benefit from a new imaging system that lets doctors see the blood pathways they have created while the patient’s chest is still open.



Until now, doctors were almost never able to confirm whether bypass surgery had been successful while the patient was still on the operating table. In most cases, only after the chest had been closed could doctors get an image of the heart and see whether blood was flowing through the newly created vessels.

"The new technology now is just fantastic," Dyels said. He went home five days after his surgery, which was performed by Robert Robbins, MD, professor and chair of cardiothoracic surgery at the Stanford University School of Medicine. "Anything I can do to help advance the technology is great."


This new technique has "turned on the lights in the surgical suites," said Peter Fitzgerald, MD, PhD, associate professor of cardiovascular medicine. Fitzgerald and his colleagues Scott Mitchell, MD, professor of cardiothoracic surgery, and assistant professor Marc Pelletier, MD, used the new technology in surgery for the first time in the United States on March 16.

The technology, called the SPY Intra-operative Imaging System, was approved in January by the U.S. Food and Drug Administration for use in coronary artery bypass surgery, the most common open-heart surgery in the country with more than 300,000 patients undergoing the procedure every year. The system, made by Novadaq Technologies, has been used successfully for several years in Asia, Europe and Canada, where Pelletier had used it on a number of occasions as a cardiac surgeon at the University of Toronto. Fitzgerald was instrumental in bringing the system to the United States. Both he and Robbins are on Novadaq’s scientific board.

Coronary artery bypass is done when blood flow to the heart is impaired because of blocked vessels that can’t be unclogged through drugs, mechanical scraping or the use of a stent to hold an obstructed artery open. The procedure involves grafting vessels from other parts of the body to create alternative conduits of blood flow to the heart. Traditionally the grafts are created from leg veins, but surgeons now frequently use arteries from the forearm and thorax.

"When the patient is open in the operating room and the surgeons have spent all this time and technical skill to restore blood flow for the patient, they look at the heart as it starts beating and see if all of the grafts look fine," explained Fitzgerald. "But this is without any objective criteria."

Around 5 to 8 percent of the time, he said, a graft that initially looked fine doesn’t work well. This can lead to unsatisfactory results and sometimes may require another procedure such as coronary stenting or repeat coronary bypass surgery. What surgeons have needed is the ability to see whether blood was flowing so that any needed corrections could be made on the spot. Until now, there have been few good options.

The SPY system uses a fluorescent green dye that attaches to proteins in the blood and emits light when stimulated by a very low-energy laser. The technique does not heat up heart tissue and does not pose any risk to the staff in the operating room. The injected dye lights up blood flowing through the veins and arteries in real time, an action that can be projected on a screen and saved.

This new technology provides in several minutes the same information gleaned from the current gold standard for visualizing coronary artery blockages: the angiogram. An angiogram uses X-rays and a contrast dye that is injected into the heart via a thin, flexible tube inserted in the arm or leg. The procedure is almost always performed after surgery, sometimes hours later or even the next day. Fitzgerald said an angiogram can be done during surgery, but it’s time-consuming, cumbersome and exposes everyone in the operating room to X-rays.

"It would be ideal if the surgeons could see what they are doing so they don’t close the chest being one conduit short," said Fitzgerald. "Now for the first time the surgeons can take a picture with a direct way to assess how efficient their procedure has been."

As a cardiac surgeon, Pelletier said he appreciated having the capability to see any imperfections in the grafts during surgery and make the necessary corrections. "Spending a few extra minutes during a four-hour operation can have benefits to the patient that will last for years," Pelletier said.

With the new capability at Stanford, a team of cardiologists and heart surgeons is spearheading a large nationwide clinical trial to systematically assess the effectiveness of SPY as well as compare it with the other ways of assessing blood flow during surgery. The research team will also track and report on how often grafts are not optimal on the first try.

Beyond the FDA-approved use in visualizing cardiac bypass graft function, Fitzgerald is hopeful that the technology will inspire other advances.

"Every time you have a new diagnostic tool, it stimulates new technology for therapy," Fitzgerald said, pointing to colonoscopy as an example. "It wasn’t until we had a video camera illuminating the inside of the gut that we learned how to take out polyps and learned to stage colorectal cancer," he explained. "We finally turned on the light inside. This is the same thing."

Mitzi Baker | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Health and Medicine:

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

nachricht Improving memory with magnets
28.03.2017 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>