Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CeNeS announces additional clinical data supporting the potential of M6G for the treatment of post-operative pain

12.04.2005


CeNeS Pharmaceuticals notes the recent publication of additional clinical data on its lead product morphine-6-glucuronide (M6G) by an academic group at King’s College, London. The data, which was published in the international journal ‘Anesthesiology’ (1), provides further support for the potential of M6G as a treatment for post-operative pain, focusing on its potential for administration under patient-controlled analgesia (PCA). Part of this data has been presented previously at the 4th International Symposium for Nociceptive/Neuropathic Pain, King’s College Hospital.



The study, which was a randomised, double-blind study comparing the analgesic efficacy of M6G and morphine administered by initial bolus followed by PCA in 100 patients undergoing major joint replacement. Under the PCA system, patients administer their own pain relief as and when it is needed.

The key findings of the study are:

  • M6G has analgesic potency similar to that of morphine. The authors speculate that the less effective pain control observed at early time points in this study in patients on M6G could be due to the need for a large loading dose or the product’s slower onset of action.
  • There were clear differences between the M6G and morphine groups in terms of respiratory depression rates. The proportion of subjects with respiratory depression was markedly higher in the morphine group (27%) compared with the M6G group (6%).
  • There was significantly less sedation in the M6G group in the immediate post-operative period as well as at the end of the 24 hour study period
  • 24 hours post-surgery, when the nausea rate was at its highest, 41% of patients receiving morphine experienced nausea compared with 21% of those receiving M6G. However, this difference did not reach the level of statistical significance.
  • The group concludes “it (M6G) has a unique pharmacodynamic profile with a better therapeutic window than morphine. Its simple, clean pharmacokinetic characteristics make it an attractive agent for further investigation…”

Commenting on the publication, Neil Clark, Chief Executive Officer of CeNeS said, “This new data adds further support to our reported clinical trial results and our belief in the potential of M6G as a new drug for the treatment of post-operative pain with significant advantages over morphine and other opiates. We believe that the less effective pain control observed with M6G at early time points in this study is due to the low loading doses used. Our first Phase III trial clearly showed that a higher loading dose of 30mg provides effective analgesia. This higher loading dose regime will be used in our second Phase III trial, which is expected to start in the next few months. If we are successful in demonstrating the efficacy and superior side effect profile of M6G compared to morphine in this large Phase III trial, which will involve approximately 440 patients, then we will have made a significant step towards the approval of the product in Europe.”


(1) Randomized, Double-blind Study of the Analgesic Efficacy of Morphine-6-Glucuronide versus Morphine Sulfate for Postoperative Pain in Major Surgery. Anesthesiology V 102, No 4, April 2005, pp 815-821

Rowan Minnion | alfa
Further information:
http://www.cenes.com

More articles from Health and Medicine:

nachricht Research offers clues for improved influenza vaccine design
09.04.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Injecting gene cocktail into mouse pancreas leads to humanlike tumors
06.04.2018 | University of Texas Health Science Center at San Antonio

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>