Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


CeNeS announces additional clinical data supporting the potential of M6G for the treatment of post-operative pain


CeNeS Pharmaceuticals notes the recent publication of additional clinical data on its lead product morphine-6-glucuronide (M6G) by an academic group at King’s College, London. The data, which was published in the international journal ‘Anesthesiology’ (1), provides further support for the potential of M6G as a treatment for post-operative pain, focusing on its potential for administration under patient-controlled analgesia (PCA). Part of this data has been presented previously at the 4th International Symposium for Nociceptive/Neuropathic Pain, King’s College Hospital.

The study, which was a randomised, double-blind study comparing the analgesic efficacy of M6G and morphine administered by initial bolus followed by PCA in 100 patients undergoing major joint replacement. Under the PCA system, patients administer their own pain relief as and when it is needed.

The key findings of the study are:

  • M6G has analgesic potency similar to that of morphine. The authors speculate that the less effective pain control observed at early time points in this study in patients on M6G could be due to the need for a large loading dose or the product’s slower onset of action.
  • There were clear differences between the M6G and morphine groups in terms of respiratory depression rates. The proportion of subjects with respiratory depression was markedly higher in the morphine group (27%) compared with the M6G group (6%).
  • There was significantly less sedation in the M6G group in the immediate post-operative period as well as at the end of the 24 hour study period
  • 24 hours post-surgery, when the nausea rate was at its highest, 41% of patients receiving morphine experienced nausea compared with 21% of those receiving M6G. However, this difference did not reach the level of statistical significance.
  • The group concludes “it (M6G) has a unique pharmacodynamic profile with a better therapeutic window than morphine. Its simple, clean pharmacokinetic characteristics make it an attractive agent for further investigation…”

Commenting on the publication, Neil Clark, Chief Executive Officer of CeNeS said, “This new data adds further support to our reported clinical trial results and our belief in the potential of M6G as a new drug for the treatment of post-operative pain with significant advantages over morphine and other opiates. We believe that the less effective pain control observed with M6G at early time points in this study is due to the low loading doses used. Our first Phase III trial clearly showed that a higher loading dose of 30mg provides effective analgesia. This higher loading dose regime will be used in our second Phase III trial, which is expected to start in the next few months. If we are successful in demonstrating the efficacy and superior side effect profile of M6G compared to morphine in this large Phase III trial, which will involve approximately 440 patients, then we will have made a significant step towards the approval of the product in Europe.”

(1) Randomized, Double-blind Study of the Analgesic Efficacy of Morphine-6-Glucuronide versus Morphine Sulfate for Postoperative Pain in Major Surgery. Anesthesiology V 102, No 4, April 2005, pp 815-821

Rowan Minnion | alfa
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>