Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CeNeS announces additional clinical data supporting the potential of M6G for the treatment of post-operative pain

12.04.2005


CeNeS Pharmaceuticals notes the recent publication of additional clinical data on its lead product morphine-6-glucuronide (M6G) by an academic group at King’s College, London. The data, which was published in the international journal ‘Anesthesiology’ (1), provides further support for the potential of M6G as a treatment for post-operative pain, focusing on its potential for administration under patient-controlled analgesia (PCA). Part of this data has been presented previously at the 4th International Symposium for Nociceptive/Neuropathic Pain, King’s College Hospital.



The study, which was a randomised, double-blind study comparing the analgesic efficacy of M6G and morphine administered by initial bolus followed by PCA in 100 patients undergoing major joint replacement. Under the PCA system, patients administer their own pain relief as and when it is needed.

The key findings of the study are:

  • M6G has analgesic potency similar to that of morphine. The authors speculate that the less effective pain control observed at early time points in this study in patients on M6G could be due to the need for a large loading dose or the product’s slower onset of action.
  • There were clear differences between the M6G and morphine groups in terms of respiratory depression rates. The proportion of subjects with respiratory depression was markedly higher in the morphine group (27%) compared with the M6G group (6%).
  • There was significantly less sedation in the M6G group in the immediate post-operative period as well as at the end of the 24 hour study period
  • 24 hours post-surgery, when the nausea rate was at its highest, 41% of patients receiving morphine experienced nausea compared with 21% of those receiving M6G. However, this difference did not reach the level of statistical significance.
  • The group concludes “it (M6G) has a unique pharmacodynamic profile with a better therapeutic window than morphine. Its simple, clean pharmacokinetic characteristics make it an attractive agent for further investigation…”

Commenting on the publication, Neil Clark, Chief Executive Officer of CeNeS said, “This new data adds further support to our reported clinical trial results and our belief in the potential of M6G as a new drug for the treatment of post-operative pain with significant advantages over morphine and other opiates. We believe that the less effective pain control observed with M6G at early time points in this study is due to the low loading doses used. Our first Phase III trial clearly showed that a higher loading dose of 30mg provides effective analgesia. This higher loading dose regime will be used in our second Phase III trial, which is expected to start in the next few months. If we are successful in demonstrating the efficacy and superior side effect profile of M6G compared to morphine in this large Phase III trial, which will involve approximately 440 patients, then we will have made a significant step towards the approval of the product in Europe.”


(1) Randomized, Double-blind Study of the Analgesic Efficacy of Morphine-6-Glucuronide versus Morphine Sulfate for Postoperative Pain in Major Surgery. Anesthesiology V 102, No 4, April 2005, pp 815-821

Rowan Minnion | alfa
Further information:
http://www.cenes.com

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>