Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tissue engineering experts discuss orthopaedics applications

11.04.2005


A future in which laboratory-grown organs and stimulated growth of muscle, bones and nerves could play a major role in treating medical conditions was revealed at a recent Tissue Engineering Symposium at Wake Forest University Baptist Medical Center.

The symposium, sponsored by Wake Forest Baptist and the International Society of Arthroscopy, Knee Surgery and Orthopaedic Sports Medicine, was part of the society’s annual conference. Tissue engineering experts from Wake Forest Baptist, Children’s Hospital of Pittsburgh, Carnegie Mellon University, the University of Texas at Austin, as well as Italy and Japan, discussed their latest work.

Tissue engineering, a term that was coined in 1986, describes the science of replacing, repairing or regenerating organs or tissue. The term is often used interchangeably with regenerative medicine.



In the field of orthopaedics, researchers described using growth factors to regenerate bone, using new technologies to enhance the healing of ligaments, efforts to produce tissue-engineered cartilage, and the possibility of use stem cells derived from muscle to improve bone healing. These advances could provide better treatments for sports injuries, cleft palate and osteoporosis, the researchers said.

"The potential in orthopaedics is not only to manage devastating congenital or traumatic problems but also to prevent or slow degenerative processes in order to maintain the activity and function of our aging population," said Gary G. Poehling, M.D., professor and chairman of othopaedics at Wake Forest Baptist.

Anthony Atala M.D., director of the Wake Forest Institute of Regenerative Medicine, said that laboratory-grown organs may one day help alleviate the shortage of donated organs for transplantation. Atala has developed bioengineered urethras, the tube through which urine is excreted from the bladder, that have been successfully implanted in humans. He has also created blood vessels, muscle, bladders, wombs, and vaginas that have been successfully tested in large animals and are close to being ready to test in humans.

Atala’s team is working to use patients’ own cells to grow more than 20 different tissue types. They harvest cells from humans and apply growth factors, to cause the cells to multiply outside the body. It can take years to develop and perfect these growth factors, which cause a group of cells about one centimeter in size to multiply to fill a football field in about 60 days. The cells are "seeded" on a model, or scaffold, where they continue to grow. The next step is implanting the model in the body, where the scaffold eventually degrades as the new organ or tissue integrates with the body.

In addition to engineering tissues and organs, Atala and his team are also working to identify new sources of stem cells. Because these cells are unspecialized, they can acquire the structure and features of other cell types, and some researchers believe they could be used to replace defective insulin-producing cells in the pancreas, as well as to treat Alzheimer’s, liver, heart, muscular and vascular diseases.

Robert Nerem, Ph.D., director of the Parker H. Petit Institute for Bioengineering and Bioscience at the Georgia Institute of Technology predicted that one day tissue engineering and regenerative medicine will result in a revolution in the medical implant industry.

But Nerem and others who work in this emerging field said that while the area is full of promise, there are still many challenges to face before new therapies will be widely available.

"These technologies are expensive and for some of them, distribution is a challenge," said Atala.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>