Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tissue engineering experts discuss orthopaedics applications

11.04.2005


A future in which laboratory-grown organs and stimulated growth of muscle, bones and nerves could play a major role in treating medical conditions was revealed at a recent Tissue Engineering Symposium at Wake Forest University Baptist Medical Center.

The symposium, sponsored by Wake Forest Baptist and the International Society of Arthroscopy, Knee Surgery and Orthopaedic Sports Medicine, was part of the society’s annual conference. Tissue engineering experts from Wake Forest Baptist, Children’s Hospital of Pittsburgh, Carnegie Mellon University, the University of Texas at Austin, as well as Italy and Japan, discussed their latest work.

Tissue engineering, a term that was coined in 1986, describes the science of replacing, repairing or regenerating organs or tissue. The term is often used interchangeably with regenerative medicine.



In the field of orthopaedics, researchers described using growth factors to regenerate bone, using new technologies to enhance the healing of ligaments, efforts to produce tissue-engineered cartilage, and the possibility of use stem cells derived from muscle to improve bone healing. These advances could provide better treatments for sports injuries, cleft palate and osteoporosis, the researchers said.

"The potential in orthopaedics is not only to manage devastating congenital or traumatic problems but also to prevent or slow degenerative processes in order to maintain the activity and function of our aging population," said Gary G. Poehling, M.D., professor and chairman of othopaedics at Wake Forest Baptist.

Anthony Atala M.D., director of the Wake Forest Institute of Regenerative Medicine, said that laboratory-grown organs may one day help alleviate the shortage of donated organs for transplantation. Atala has developed bioengineered urethras, the tube through which urine is excreted from the bladder, that have been successfully implanted in humans. He has also created blood vessels, muscle, bladders, wombs, and vaginas that have been successfully tested in large animals and are close to being ready to test in humans.

Atala’s team is working to use patients’ own cells to grow more than 20 different tissue types. They harvest cells from humans and apply growth factors, to cause the cells to multiply outside the body. It can take years to develop and perfect these growth factors, which cause a group of cells about one centimeter in size to multiply to fill a football field in about 60 days. The cells are "seeded" on a model, or scaffold, where they continue to grow. The next step is implanting the model in the body, where the scaffold eventually degrades as the new organ or tissue integrates with the body.

In addition to engineering tissues and organs, Atala and his team are also working to identify new sources of stem cells. Because these cells are unspecialized, they can acquire the structure and features of other cell types, and some researchers believe they could be used to replace defective insulin-producing cells in the pancreas, as well as to treat Alzheimer’s, liver, heart, muscular and vascular diseases.

Robert Nerem, Ph.D., director of the Parker H. Petit Institute for Bioengineering and Bioscience at the Georgia Institute of Technology predicted that one day tissue engineering and regenerative medicine will result in a revolution in the medical implant industry.

But Nerem and others who work in this emerging field said that while the area is full of promise, there are still many challenges to face before new therapies will be widely available.

"These technologies are expensive and for some of them, distribution is a challenge," said Atala.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>