Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liver may be source of ’good’ cholesterol

11.04.2005


Research in mice suggests that the liver may produce most of the body’s "good" cholesterol, an unexpected finding that might one day help scientists develop new treatments to raise levels of this heart-protecting molecule in humans.



In the May issue of the Journal of Clinical Investigation, researchers from Wake Forest University School of Medicine and colleagues will report on a project that used gene-targeting in mice to simulate a rare disease in people – Tangier disease. People with this genetic disease produce virtually no "good" cholesterol.

"In studies of mice, we provided the first definitive proof that the liver is the source of about 80 percent of the high-density lipoprotein (HDL), or ’good’ cholesterol, that circulates in the blood," said John S. Parks, Ph.D., senior researcher, from the school of medicine, which is part of Wake Forest University Baptist Medical Center. "Understanding more about how HDL is produced could lead to new treatments to raise its levels."


Learning more about Tangier disease could help people with less severe cholesterol disorders, Parks said. Low levels of HDL are associated with higher risk of heart attacks, even when total cholesterol levels are normal.

People with Tangier disease have mutations in a gene (ABCA1) involved in the production of HDL. Like all genes, ABCA1 exerts its effects through a protein that it manufactures. The ABCA1 protein is found in many parts of the body, so scientists have been unsure which specific tissues are involved in HDL production. They suspected the liver played an important role because of high levels of ABCA1 there.

To test their hypothesis and learn more about how HDL is produced, the researchers developed mice without the ABCA1 gene in the liver – which means their livers cannot produce HDL. The researchers measured HDL levels in these mice and found that concentrations of HDL were 80 percent lower than in normal mice. The mice also had higher levels of triglycerides, as do patients with Tangier disease.

Until now, scientists had thought that HDL formation occurred throughout the body – rather than coming mainly from one organ. They know that some of it is manufactured in the walls of blood vessels, for example.

"These results profoundly alter our concept of how HDL is manufactured in the body and establish the liver as the single most important source of HDL in a mouse model," said Parks, a professor of pathology.

Parks said the finding could be important in drug development. "If we want to raise HDL levels, it might make sense to focus on drugs that target the liver," he said.

Parks said research into Tangier disease is a good example of how learning more about a rare disease can lead to important new information. "When studying the basic mechanisms of a rare disorder you often learn lessons from nature that have other applications," he said.

For example, scientists have learned that the ABCA1 gene may play a role in Alzheimer’s disease and prostate cancer. Parks and colleagues hope to collaborate with other scientists to learn more about the role of ABCA1 in these diseases.

They are also starting a project to compare the effects of the HDL produced in the liver with the HDL produced in the walls of blood vessels. "We will look at levels of heart disease in mice that cannot produce HDL in the liver versus mice that cannot produce it in the vessel walls," said Parks.

Parks’ colleagues on the current research are from the University of North Carolina at Chapel Hill, the University of British Columbia in Vancouver, Canada, and the University of Maryland School of Medicine.

The research was supported by the National Institutes of Health, Canadian Institutes of Health Research, the Michael Smith Foundation for Health Research, The Saal van Zwangenberg foundation, the Netherlands Heart Foundation and the Heart and Stroke Foundation of British Columbia and the Yukon.

Tangier disease is named for an island off the coast of Virginia where the disease was first discovered. The disease is extremely rare. As of 1992, fewer than 50 cases had been identified worldwide.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>