Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Liver may be source of ’good’ cholesterol


Research in mice suggests that the liver may produce most of the body’s "good" cholesterol, an unexpected finding that might one day help scientists develop new treatments to raise levels of this heart-protecting molecule in humans.

In the May issue of the Journal of Clinical Investigation, researchers from Wake Forest University School of Medicine and colleagues will report on a project that used gene-targeting in mice to simulate a rare disease in people – Tangier disease. People with this genetic disease produce virtually no "good" cholesterol.

"In studies of mice, we provided the first definitive proof that the liver is the source of about 80 percent of the high-density lipoprotein (HDL), or ’good’ cholesterol, that circulates in the blood," said John S. Parks, Ph.D., senior researcher, from the school of medicine, which is part of Wake Forest University Baptist Medical Center. "Understanding more about how HDL is produced could lead to new treatments to raise its levels."

Learning more about Tangier disease could help people with less severe cholesterol disorders, Parks said. Low levels of HDL are associated with higher risk of heart attacks, even when total cholesterol levels are normal.

People with Tangier disease have mutations in a gene (ABCA1) involved in the production of HDL. Like all genes, ABCA1 exerts its effects through a protein that it manufactures. The ABCA1 protein is found in many parts of the body, so scientists have been unsure which specific tissues are involved in HDL production. They suspected the liver played an important role because of high levels of ABCA1 there.

To test their hypothesis and learn more about how HDL is produced, the researchers developed mice without the ABCA1 gene in the liver – which means their livers cannot produce HDL. The researchers measured HDL levels in these mice and found that concentrations of HDL were 80 percent lower than in normal mice. The mice also had higher levels of triglycerides, as do patients with Tangier disease.

Until now, scientists had thought that HDL formation occurred throughout the body – rather than coming mainly from one organ. They know that some of it is manufactured in the walls of blood vessels, for example.

"These results profoundly alter our concept of how HDL is manufactured in the body and establish the liver as the single most important source of HDL in a mouse model," said Parks, a professor of pathology.

Parks said the finding could be important in drug development. "If we want to raise HDL levels, it might make sense to focus on drugs that target the liver," he said.

Parks said research into Tangier disease is a good example of how learning more about a rare disease can lead to important new information. "When studying the basic mechanisms of a rare disorder you often learn lessons from nature that have other applications," he said.

For example, scientists have learned that the ABCA1 gene may play a role in Alzheimer’s disease and prostate cancer. Parks and colleagues hope to collaborate with other scientists to learn more about the role of ABCA1 in these diseases.

They are also starting a project to compare the effects of the HDL produced in the liver with the HDL produced in the walls of blood vessels. "We will look at levels of heart disease in mice that cannot produce HDL in the liver versus mice that cannot produce it in the vessel walls," said Parks.

Parks’ colleagues on the current research are from the University of North Carolina at Chapel Hill, the University of British Columbia in Vancouver, Canada, and the University of Maryland School of Medicine.

The research was supported by the National Institutes of Health, Canadian Institutes of Health Research, the Michael Smith Foundation for Health Research, The Saal van Zwangenberg foundation, the Netherlands Heart Foundation and the Heart and Stroke Foundation of British Columbia and the Yukon.

Tangier disease is named for an island off the coast of Virginia where the disease was first discovered. The disease is extremely rare. As of 1992, fewer than 50 cases had been identified worldwide.

Karen Richardson | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>