Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery brings new hope in the fight against cancer in children

07.04.2005


A team of scientists from Aston University in Birmingham, UK have made a discovery that could lead to new ways of treating children who develop a particularly aggressive form of cancer. The research was funded by the Association for International Cancer Research (AICR).



Craniopharyngioma tumours cause severe headaches, vomiting, disturbed vision and growth defects. They are usually diagnosed in babies and very young children, and cause one in ten of all childhood brain tumours.

Now, new research* by Dr Eric Adams and his team at Aston University has consistently found that a gene called catenin is altered in nearly all cases studied. This they believe is important because the gene is involved with ensuring babies develop normally in the womb, and leads them to endorse the belief that craniopharyngiomas are congenital ie the defect has occurred very early in life.


’Normally, the catenin gene is switched on very briefly, carries out its duties in the cell, and then switches off at exactly the right moment. We believe that the mutations cause the gene to be switched on for far too long and this can lead to too much cell growth. It’s a bit like the accelerator button on a train getting jammed at maximum and the engine races out of control’, explains Dr Adams.

Doctors believe that when symptoms first appear the tumour is growing quite fast and this makes it very difficult to treat, even by modern surgical procedures. Because craniopharyngiomas are ’sticky’ in that they attach to surrounding brain tissue, the neurosurgeon has to be sure to remove the disease without damaging the brain. This often results in residual tumour being left behind which re-grows.

Another problem for many of these children is that the tumour grows in an area of the brain that controls the endocrine glands. Many young patients suffer from inadequate growth and delayed puberty because of hormone deficiency and require life-long hormone replacement therapy.

’We are very excited by what we have found because it means that for the first time new treatments can be developed to be directed against these gene defects. One approach might be to devise methods to knock out the defective catenin gene by adding an ’anti gene’, something that prevents the gene being switched on ­ into the diseased cells,’ Dr Adams adds.

Derek Napier, AICR’s Chief Executive believes an alternative or additional therapies to surgery is desirable, but development of new drugs or procedures depends on better understanding of how these tumours grow.

’Surprisingly, even though craniopharyngioma is a very serious disease, very few laboratory studies on its biochemistry have to date been performed. AICR has supported Dr Adams’ work for the past three years to focus on obtaining a better understanding of these tumours to help clinicians devise improved or additional treatments. I am convinced this discovery will lead to new ways to tackle what is undoubtedly a particular aggressive and debilitating disease.’

Sally Hoban | alfa
Further information:
http://www.aston.ac.uk

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>