Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery brings new hope in the fight against cancer in children

07.04.2005


A team of scientists from Aston University in Birmingham, UK have made a discovery that could lead to new ways of treating children who develop a particularly aggressive form of cancer. The research was funded by the Association for International Cancer Research (AICR).



Craniopharyngioma tumours cause severe headaches, vomiting, disturbed vision and growth defects. They are usually diagnosed in babies and very young children, and cause one in ten of all childhood brain tumours.

Now, new research* by Dr Eric Adams and his team at Aston University has consistently found that a gene called catenin is altered in nearly all cases studied. This they believe is important because the gene is involved with ensuring babies develop normally in the womb, and leads them to endorse the belief that craniopharyngiomas are congenital ie the defect has occurred very early in life.


’Normally, the catenin gene is switched on very briefly, carries out its duties in the cell, and then switches off at exactly the right moment. We believe that the mutations cause the gene to be switched on for far too long and this can lead to too much cell growth. It’s a bit like the accelerator button on a train getting jammed at maximum and the engine races out of control’, explains Dr Adams.

Doctors believe that when symptoms first appear the tumour is growing quite fast and this makes it very difficult to treat, even by modern surgical procedures. Because craniopharyngiomas are ’sticky’ in that they attach to surrounding brain tissue, the neurosurgeon has to be sure to remove the disease without damaging the brain. This often results in residual tumour being left behind which re-grows.

Another problem for many of these children is that the tumour grows in an area of the brain that controls the endocrine glands. Many young patients suffer from inadequate growth and delayed puberty because of hormone deficiency and require life-long hormone replacement therapy.

’We are very excited by what we have found because it means that for the first time new treatments can be developed to be directed against these gene defects. One approach might be to devise methods to knock out the defective catenin gene by adding an ’anti gene’, something that prevents the gene being switched on ­ into the diseased cells,’ Dr Adams adds.

Derek Napier, AICR’s Chief Executive believes an alternative or additional therapies to surgery is desirable, but development of new drugs or procedures depends on better understanding of how these tumours grow.

’Surprisingly, even though craniopharyngioma is a very serious disease, very few laboratory studies on its biochemistry have to date been performed. AICR has supported Dr Adams’ work for the past three years to focus on obtaining a better understanding of these tumours to help clinicians devise improved or additional treatments. I am convinced this discovery will lead to new ways to tackle what is undoubtedly a particular aggressive and debilitating disease.’

Sally Hoban | alfa
Further information:
http://www.aston.ac.uk

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>