Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology, new approach to help heart and lung patients awaiting transplants

07.04.2005


Stem cell research and artificial lung technology presented at ISHLT meeting today (6-Apr-2005)



Promising new technology may extend the life of a failing organ for patients suffering from heart or lung disease while they wait for a donor organ. The use of stem cells may eliminate the need for a transplant and even eradicate heart disease in patients. Research and discussion will be presented today during symposia at the International Society for Heart and Lung Transplantation (ISHLT) Annual Meeting and Scientific Session in Philadelphia.

Cardiac Devices


Presenter Robert Kormos, M.D., University of Pittsburgh (Penn.) Medical Center, advocates the development and use of a pump device that will address, and in some cases eliminate, heart failure. Partnered with stem cell technology, the new pump would be smaller and minimally invasive and would allow a patient’s heart to emerge strong enough to accept the implanted stem cells that would improve the heart’s function and reduce or eliminate heart disease in the patient.

"We know from successful trials outside the U.S. that implanting stem cells results in myocardial recovery. By changing our way of thinking and addressing heart failure in its earlier states, and by using devices and stem cells together, a patient can enjoy life without heart failure instead of continuing to live with it," says Kormos.

Kormos also suggests that a new approach for ventricular assist devices (VAD) is on the horizon for cardiac patients. While VAD usage gains increasing acceptance, a new way of thinking may change the way doctors use these assistive devices.

Ventricular assist devices stabilize adults with heart disease, and act as a mechanical "bridge" for patients waiting for a donor heart. According to a Columbia University Medical Center study, patients in end-stage heart failure who received a VAD had more than double the one-year survival rate compared with patients who did not receive a device.

However, Kormos challenges that VADs should be incorporated earlier in treatment. "We in the medical community spend a lot of time helping patients live with heart failure until their bodies can’t tolerate it any longer. Ironically, by the time we deem the candidate eligible for a heart transplant or a VAD, the patient may be so sick that he is no longer a good candidate for either, " says Kormos.

Pediatric Devices

VADs are designed for adult patients, but recent studies show that they may also help some children suffering from heart disease. "More than 70 percent of children with end-stage heart disease are bridging successfully to transplantation with a VAD. This emphasizes the need to develop a device for smaller patients who cannot be supported with current technology," says James Kirklin, M.D., University of Alabama at Birmingham and participant in this afternoon’s Symposium, "The Final Technology Solutions for End Stage Congestive Heart Failure" at the ISHLT Meeting.

Research on implanting cardiac defibrillators in children will also be presented at the Meeting. Defibrillators help prevent sudden cardiac death and have proven effective for adults with heart disease.

"Our research has shown that children who have a higher likelihood of decreased blood flow to tissue or organs may benefit, but in general, children are at a much lower risk of sudden cardiac death," says Kirklin. "Further studies are still needed."

Lung Devices

Several devices are also emerging to help people with lung disease. An estimated 4,000 Americans were on a lung transplant waiting list in 2004 and demand outpaced donor organ availability by approximately 75 percent. Research related to lung devices will be discussed during the afternoon Symposium, "Cardiopulmonary Assist Devices: Looking Beyond the Horizon."

"Unlike the heart, no mechanical device exists for lung patients," says Bart Griffith, M.D., University of Maryland School of Medicine, Baltimore.

Griffith explains that good temporary options have been available for some time, but they are bulky and restrictive for patients. He says there is an urgent need for a better assistive device, and ultimately, a mechanical replacement for failing lungs.

An interventional lung assist (ILA), developed by the German company Novalung GmbH, shows promising results.

"Several hundred patients in Europe have been treated successfully with ILA," Griffith says.

A non-invasive device, the ILA is connected to the patient and simulates lung function by removing carbon dioxide and increasing oxygen levels in the patient’s blood, relieving the damaged lung from performing that task.

Griffith’s research is focused on a prototype pump lung that could become the first artificial lung in the United States. As small as a CD player, its portability offers patients mobility while it actively mixes blood as it pumps through the device. Griffith estimates the device could be ready for patient use in two years.

Lauren Mason | EurekAlert!
Further information:
http://www.ishlt.org/

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>