Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Data processing joins fight to treat cancer

07.04.2005


Laboratory technicians battling cancer want to improve diagnosis and treatment of the disease. But they are drowning in data from modern biological techniques. New Web-based software – validated in three European oncology hospitals – can extract potentially life-saving knowledge from such data in minutes.



In Europe, cancer is the second cause of death; worldwide it accounts for 23.5 per cent of all deaths. The race to beat this disease increasingly depends on groundbreaking bioinformatics research. Welcome as they are, the various techniques being developed in this field create massive amounts of data.

“Bioinformatics faces several challenges,” says Philippe Boutruche, coordinator of the IST project HKIS. “Life scientists need to access data from many different sources and in a variety of formats.” He adds that they lack standards to cross all this data, which cover everything from human DNA to genomes, and may spend weeks doing this manually.


An integrated software platform

Under HKIS, the five partners developed an integrated software platform for biological and biomedical data processing in cancerology. “It was built around Amadea, software used by banks and marketers for processing, crossing and transforming data. We saw its potential for handling the huge volumes of patient data generated from cancer-research techniques.”

The basic interactive platform is just 20 MB in size. Aimed at medical and biological professionals, it can connect to all data types saved in any form or structure. It can integrate and analyse new data sources from public and private databases much faster than more labour-intensive solutions.

The platform needs no programming, can be accessed on the Internet and may be used by people with different expertise levels. Thanks to a cache memory management system and special algorithms, it provides graphical output for each analysis stage in real time, even if data is stored on another server.

“We want to provide doctors, bioinformaticians and clinicians with a common environment to build data-driven experiments,” says Boutruche. “The project’s platform is homogeneous, so there is no need to export or configure data from one format to another. Being integrated, it allows a continuous workflow with raw data saved in XML format. Users can run statistical mining or algorithms, which may show why the genes of some patients are more susceptible to cancer.”

Trials prove successful

Successful trials were conducted in 2003 in specialist cancer hospitals in the Ulm Medicine University, the Curie Institute and the European Oncology Institute. Two of them used real medical data from their own databases, while the third focused on data mining. “Our platform helped to define some predictive diagnostic genes for identifying genes of interest in bladder and pancreas cancer,” notes the coordinator.

He believes the project’s technology could benefit a variety of other medical and biology domains. Among them are genetic diseases, therapeutic targets and drug discovery, genotyping and biotechnologies in general. Others include the management of genetic databases, where the software could enable quality assessment and automation.

By mid-2005, the partners will have a commercial product for biology labs, adding a specialised bio-pack to the original software. This pack will integrate the project’s major results, including the ability to access data from different databases and to upgrade the platform.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>