Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

West Africa: meningitis epidemics driven by the wind

05.04.2005


A meningitis epidemic hits West Africa every year, affecting 25 000 to 200 000 people. It has long been known that the timing of this epidemic and its spatial distribution within the “Meningitis Belt”, situated between 10° and 15° North, are closely linked to climatic conditions. Involved in the AMMA programme ( 1 ), IRD and University of Paris-VII researchers ( 2) produced the first quantified description of this relationship using statistical methods. They linked up the annual changes in atmospheric humidity and wind speed to epidemiological data collected over several years in this region. The number of cases of meningitis thus appears in synchrony with seasonal climate variations, epidemic onset coinciding with the time when the winter winds are strongest. These results should be useful for the development of epidemiological early-warning systems in this region, in order to prevent epidemics and try and limit their effect.



The Sahelo-Sudanian band of Africa is an endemic area for meningococcal meningitis (MCM). The disease, an infection of the meninges by the bacteria Neisseria meningitidis, is highly contagious and affects 25 000 to 200 000 people per year, particularly children. Outbreaks occur every year between February and May. Their geographical distribution is contained within what is called the Meningitis Belt circumscribed between 10° and 15° of latitude North. Several factors contribute to epidemic onset, in particular loss of immunity among communities in the face of the bacterial agent, owing to the renewal of generations and the increase in the number of individuals who have never been in contact with it, and also because of climatic conditions. Sahelo-Sudanian Africa is under a climate of alternating dry season in winter and a monsoon season in summer. This alternation is linked to the shift in latitude of the Intertropical Front which corresponds to the convergence zone between the northern winds, called the Harmattan, and the monsoon winds coming from the South. In winter, Sahelo-Sudanian Africa receives the influence of the Harmattan winds. These warm, dry winds, are dust-loaded and cause damage to the mucous membranes of the respiratory system. Conditions are propitious for the transmission of the MCM bacteria to the blood and hence for triggering meningitis epidemics.

Through their involvement in the AMMA programme (1), researchers from the IRD and partner institutes (2) have just for the first time quantified this link between the epidemics cycle and climate variations. Statistical methods brought out evidence of a coincidence between the seasonal variability of the number of cases of meningitis recorded in Mali and the climate dynamics on the scale of this zone.


The Harmattan winds are the dominant feature of the winter climate of Sahelo-Sudanian Africa. The research team therefore sought to assess the influence of these winds on the epidemics. In order to do this, they used wind speed and atmospheric humidity data to develop synthetic atmospheric indices essential for building models of annual climate cycles. These indices were then correlated with epidemiological datasets coming from WHO (World Health Organization) weekly reports on Mali, between 1994 and 2002.

For each of these nine years, a winter maximum for the Harmattan was established. This represents the week when the wind index was highest. On average, this maximum corresponds to the sixth week of the year, between 7 and 15 February, when the Intertropical Front is situated at its southern latitude. Statistical analysis shows that changes in the wind speed index in the course of these seasons are concomitant with the rise in the number of people infected with meningitis, the start of the epidemic coinciding with the Harmattan winter maximum. The end of the epidemics is usually signalled by a recession in the sixteenth week, with the onset of the rainy season, which removes the conditions favourable for meningococcus transmission. The same analysis was then conducted on the atmospheric humidity index. It reinforced the message of these results, the lowest atmospheric humidity and the epidemic onset also corresponded to the sixth week of the year, 7 to 15 February.

Thanks to this preliminary research, combining climate science and health sciences, it is possible to think in terms of setting up epidemiological monitoring systems in order to have early warning of meningitis epidemics in this region of West Africa and attempt to limit their impact. However, these results do not provide a way of defining a possible link between the intensity of winter and the size of the epidemic. Moreover, the climate model used is founded on a period of only nine years, and possibly large variations of climate or epidemics over a larger time-scale cannot be taken into account. This model will consequently have to be tested over longer periods and on a finer spatial scale, in order to study these variations in more detail and assess their impact on the progression of the disease within Mali.

The setting-up of an Environmental Research Observatory (ORE AMMA-Catch), devoted to collecting measurements of climatic and health parameters in West Africa, should contribute to extending and continuing this research in a public health perspective.

Marie Guillaume – DIC

Translation : Nichlas Flay

1. Several IRD research units (UR 086 LODYC/LOCEAN, UMR 7617 IRD-CNRS-UPMC and UR 165 UMR 2724 IRD-CNRS ) have worked with the University of Paris VII (UFR GHSS).

2. The AMMA programme ( Analyse multidisciplinaire de la mousson africaine) was launched at the start of 2002 on the initiative of the IRD, the CNES, the CNRS, Météo-France and the African organizations ACMAD (African Center for Meteorological Applications to Development) and AGRHYMET (Centre d’Agro-hydro-meteorologie of Niamey, Niger).

Helene Deval | EurekAlert!
Further information:
http://www.ird.fr

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>