Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tissue Engineering Restores Cornea

05.04.2005


The Moscow scientists have conducted clinical trials of a new method for treatment of deep burns of cornea. Their effort has been supported by the Russian Foundation for Basic Research.



Specialists of the Koltsov Institute of Developmental Biology, Russian Academy of Sciences, and the Gelmgolts Scientific Research Institute of Eye Diseases suggest that deep burns of cornea should be treated by transplanting artificial equivalent of stroma (the tissue directly underlying the cornea) on the affected area. The researchers have developed technique for preparation and transplantation of live equivalent of stroma (LES) and tested it in the clinic on patients with heavy burns of eyes. They managed to help the overwhelming majority of patients.

The share of burns among all eye traumas makes about 38 percent, with considerable proportion of cases involving cornea damage. The cornea is supported by the stroma connective tissue, which also gets damaged in case of deep burns. If the stroma is missing or significantly destroyed, the remaining cornea cells are unable to recover injuries as they have no support. Therefore, the major task in treating cornea defects is stroma recovery. This task is convenient to solve via tissue transfer. Foreign researchers suggest that cell culture taken from a healthy eye should be transplanted on the burnt area. However, such operation poses a serious trauma by itself, which is not always justified.


The Moscow scientists chose another way. They created a live equivalent of stroma – a temporary framework, along which cornea cells could “crawl over” to the damaged area. The live equivalent of stroma represents human fibroblasts inclosed in collagen gel that can be kept for several days. Human fibroblasts were picked out of skin fragments remaining after cosmetic surgery or from the 3- to 5-week abortive material. The method has successfully passed first clinical trials.

The researchers treated 21 patients with severe and extremely severe eye burns. Previously, a lot of volunteers had already tried other treatment modes but without success. The ophthalmologists moved away mortified cells, laid a transplant on the wound and closed the transplant with a soft contact lens. In 3 to 5 days, the transplantation was repeated to reinforce medicinal effect. The live equivalent of stroma allowed not only to preserve traumatized patients’ eyes, but even to partially recover eyesight. Treatment efficiency depended on heaviness of stroma affection, condition of eyelids’ tissues adjacent to the cornea. If eyelids or conjunctiva had not been affected, and no corneal caligo had occurred, the wound closed within two weeks. Later on, the cornea retained transparency, which allowed to achieve maximum acuity of vision possible in case of such trauma (0.2-0.7). If at the point of treatment the cornea had been blurred, afterwards, acuity of vision did not exceed 0.06. However, with very young patients who started the treatment immediately after burning and cured it quickly, the cornea became more transparent in the course of time.

The researchers believe that the main advantage of the method is its multiple action. Transplanted fibroblasts protect tissues underlying the cornea from negative impact of external factors, create temporary matrix along which the cornea cells can move and close the burn, and excrete growth factors stimulating tissue recovery. As times goes by, the transplant is replaced by the patient’s own cells. The authors believe that another advantage of the method lies in the possibility to partially recover transparency of affected cornea.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>