Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chronic inflammation caused by too little stomach acid leads to gastric cancer

04.04.2005


Genetically engineered mice will help U-M scientists decipher signals that trigger gastric cancer in humans



When it comes to gastric cancer, too little stomach acid can be just as dangerous as too much, according to scientists at the University of Michigan Medical School. Both extremes create inflammatory changes in the stomach lining and a condition called chronic atrophic gastritis, which over time often leads to cancer.

In research published in the March 31 issue of Oncogene, U-M scientists demonstrated that chronic gastritis progresses to gastric cancer in mice with abnormally low levels of gastrin – a hormone that stimulates stomach lining cells called parietal cells to secrete hydrochloric acid. Other researchers have shown that over-production of gastrin in mice stimulates uncontrolled growth of cells in the stomach lining and the development of gastric tumors.


Most physicians are aware of the association between chronic inflammation and gastric cancer. They also know that infection with a bacterium called Helicobacter pylori, if left untreated, can cause stomach cancer. But the fact that lower-than-normal acidity can trigger pre-cancerous changes in the stomach lining is not well-known.

"Our study shows that inflammation, regardless of the cause, is the key to the development of gastric cancer," says Juanita L. Merchant, M.D., Ph.D., a U-M professor of internal medicine and of molecular and integrative physiology. "We’re finding that there are many mechanisms, in addition to gastrin hypersecretion and H. pylori infection, capable of producing the chronic inflammatory changes that lead to cancer."

Most gastric cancers are adenocarcinomas, meaning they develop in epithelial cells lining the stomach. The American Cancer Society estimates that, in 2005, there will be 21,860 new cases of gastric cancer reported in the United States and 11,550 deaths from the disease.

"It’s a fairly deadly type of cancer and difficult to treat, especially in advanced stages," according to Merchant. "Our goal is to identify genetic and molecular changes that occur early – for example, during the inflammatory process before cancer develops – and then see if it is possible to reverse those changes."

Merchant has spent years studying pre-cancerous physical and molecular changes in epithelial cells lining the stomach wall. Now, she has a new research partner – a line of genetically engineered mice that secrete abnormally low amounts of hydrochloric acid, because they lack the gene required to produce gastrin. The mice were generated in the laboratory of Linda C. Samuelson, Ph.D., a professor of molecular and integrative physiology in the U-M Medical School.

The gastrin-deficient mice are especially valuable, because the progression of cell changes leading to gastric cancer in these mice matches changes seen in the development of human gastric cancer. In both species, the process begins with chronic gastritis, which leads to atrophy of the stomach lining, followed by abnormal tissue changes and, finally, the development of malignant cells.

"Now we have a mouse model that we can use to isolate the different genetic steps in human gastric cancer," Merchant says. "We’ve identified certain molecular changes and are in the process of testing these molecules to see how each contributes to the transformation of normal mucosa into gastric cancer."

Three genes of particular interest are RUNX3, TFF1 and STAT3, according to Yana Zavros, Ph.D., a U-M research investigator and first author of the Oncogene paper. "RUNX3 is a stomach-specific tumor suppressor gene whose deletion in mice has been shown to result in gastric cancer," Zavros explains. "TFF1 appears to have a protective effect on the gastric mucosa. STAT3 is a gene that mediates inflammatory signals and has been linked to the development of cancer.

"We are especially interested in RUNX3, because its activity is suppressed in mouse and human gastric cancers," Zavros adds. "Other researchers have shown that RUNX3 stimulates apoptosis or programmed cell death. We hope to learn how the inflammatory process suppresses this critical gene, and subsequently suppresses apoptosis, as well."

Merchant and Zavros believe that suppression of RUNX3’s apoptosis-stimulating signal may be key to the development of gastric cancer, at least in the antrum. They examined gastric tissue from mice in their study using an assay called TUNEL, which detects cells in the process of undergoing apoptosis.

"We found striking differences in the apoptotic rates of parietal cells in the fundus, or upper compartment of the stomach, compared to the antrum where the tumors were developing," Merchant says. "The antrums we studied had a 50-percent to 75-percent decrease in the cell death rate. Rates of cell growth and reproduction were about the same in both stomach compartments.

"So we think that gastric cancer, at least in the antrum, appears to be caused by suppression of the normal rate of apoptosis, rather than by cells growing wildly out of control," Merchant says. "This is a question we will explore in more depth as our research continues."

Sally Pobojewski | EurekAlert!
Further information:
http://www.umich.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>