Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New miniaturised chip dramatically reduces time taken for DNA analysis

04.04.2005


The portable device will speed up performing paternity tests, identifying bacterial infections and detecting genetically modified organisms (GMOs)



A team of researchers at the Universitat Autònoma de Barcelona has developed new miniature sensors for analysing DNA. The sensors have the same size and thickness as a fingernail and reduce the time needed to identify DNA chains to several minutes or a few hours, depending on each chain. These sensors can be applied to many different tasks, ranging from paternity tests and identifying people to detecting genetically modified food, identifying bacterial strains in foodborne illnesses and testing genetic toxicity in new drugs. Once mass production of the sensors begins, their cost and availability will be similar to that of pregnancy test kits found in pharmacies.

The researchers Salvador Alegret, Manuel del Valle and Maria Isabel Pividori, all of whom are members of the Sensors and Biosensors Group at the UAB’s Department of Chemistry, developed the new sensors based on their experience in research with electrochemical sensors. These can identify a substance by chemically interacting with it and converting this interaction into an electrical current that they measure.


To detect DNA, the new miniaturised electrochemical genosensors have a probe containing DNA fragments that complement the DNA they aim to detect. For example, to detect Salmonella in a sample of mayonnaise, the probe has fragments of the type of DNA that complements that found in a group of genes that identify the bacteria. When the probe is submerged into the mayonnaise, some of the DNA fragments from the bacterial cells join the complementing fragments from the probe, creating a measurable electrical current. The sensor converts this current into a signal that can be seen by the person controlling the tests, making him aware there are bacteria. Also, because the sensors are very small and easy to manipulate, it is possible to assemble a set of sensors that can collect data simultaneously and deduce information about the bacteria such as which strain caused the foodborne illness.

This type of analysis already takes place in laboratories, but until now the experimental measures needed were not suitable for in situ analysis. By using the new sensors developed by UAB scientists, the time taken to identify the source of infection for Legionella would decrease from two days, as is currently the case using organic production techniques, to just thirty minutes. In trials developed with the support of the UAB’s Department of Genetics and Microbiology, the new sensors have enabled Salmonella to be identified in four and a half hours, compared to three to five days using the traditional microbiological methods. This method for identifying bacteria could also be used to detect other infectious agents such as Campylobacter and Listeria, and the sensor could easily be adapted for use in medicine, environmental monitoring and the industrial sector.

Other important applications for DNA sensors include: detecting genetically modified organisms in food, either in basic ingredients or in prepared food; identifying people, either to establish blood relations or to find criminal evidence; and testing the toxicity of different drugs to establish what damage they may cause to the DNA molecule of disease-causing microorganisms and of cells in patients.

"The next step is to mass-produce the sensors", states Salvador Alegret, the director of research. "Mass production will allow costs to be reduced and the product to become as widely available as pregnancy test kits we can buy at the local pharmacy".

Electrochemical genosensors vs DNA chips

Identifying DNA chains has become increasingly important in biochemistry, medicine and biotechnology. But traditional DNA-analysis techniques are becoming outdated as demand increases for more genetic information to be found in less time and at a lower cost. An important step forward in this direction was the creation of DNA chips, in which the UAB played a leading role in Catalonia. Hundreds, or even thousands, of genetic tests can be performed simultaneously with these chips, which are now a vital part of any large-scale project, such as unlocking the genetic code of an organism. DNA chips are limited to a certain extent because of some very specific analytical problems, such as establishing the source of microbial contamination quickly and efficiently. The new miniaturised electrochemical genosensors meet the current need for DNA to be analysed at a low cost with easy-to-use devices that do not need to be supervised by highly trained scientists.

Octavi López Coronado | EurekAlert!
Further information:
http://www.uab.es

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>