Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Hope for Chagas Disease Treatment

01.04.2005


Chagas disease, which is transmitted to humans by a blood-sucking insect known as an Assassin bug, is the most devastating parasitic infection in Central and South America and Mexico. The protozoan parasite that causes the disease, Trypanosoma cruzi, infects 16 to 18 million people, causing severe chronic illness and tens of thousands of deaths per year.



Until now, there has been no effective treatment for the long-term, chronic form of Chagas disease, which kills up to one-third of those infected, usually by heart failure. However, two Howard Hughes Medical Institute (HHMI) international research scholars have now found that in mice, a compound called TAK-187 is significantly more effective than the current standard of care - the drug benznidazole - in preventing T. cruzi-induced cardiac damage. Julio Urbina from the Venezuelan Institute for Scientific Research, Miguel Angel Basombrio from the National University of Salta, and colleagues report their findings in an early online publication of the April issue of the journal Antimicrobial Agents and Chemotherapy.

“Only one percent of the new drugs introduced to the market in the last 25 years were developed to treat tropical diseases, despite the enormous unmet need for such compounds.”
Julio Urbina



Benznidazole, a drug used to treat acute, recent Chagas infections, often has toxic side effects and does not work once the disease has entered its chronic phase. As an alternative, Urbina, Basombrio, and colleagues tested TAK-187, a compound that prevents T.cruzi from producing a member of the steroid family called ergosterol, which is essential to the parasite’s life cycle. The compound is currently in development as a systemic antifungal agent, but the results of the current study suggest that drugs of this type, which inhibit ergosterol synthesis, could be a “superior alternative to currently available therapy in the management of chronic Chagas disease,” Urbina and Basombrio write in their report.

The scientists infected a group of mice with T.cruzi, then treated those mice with either TAK-187, benznidazole, or nothing at all. While both drugs eliminated T.cruzi from the blood of infected animals, the researchers found that TAK-187 was more effective at preventing cardiac and skeletal inflammation and tissue damage, with no toxic side effects. Cardiac and skeletal damage occur in chronic Chagas infection, causing crippling and death.

Importantly, TAK-187 was effective at a dose that was both 10 times lower and administered less frequently than that of benznidazole. The researchers think this may be because the new compound is eliminated more slowly than benznidazole from the treated animals and is also more resistant to metabolism by the mammalian host.

The latest study confirms results published in 2003 by Urbina and colleagues in the International Journal of Antimicrobial Agents, when they found TAK-187 effective against drug-resistant strains of T.cruzi.

“These results, together with the previous publication, are very promising,” said Roberto Docampo, a professor at the Center for Tropical and Emerging Global Diseases at University of Georgia. “The results strongly support the view that a more efficient treatment for Chagas disease could be available.” But Louis Kirchhoff, a professor at University of Iowa, questions whether the drug is effective enough. “TAK-187 suppresses T-cruzi,” he said. “What we are looking for is a compound that wipes out the parasite.”

Urbina and colleagues now plan clinical trials to determine the safety and efficacy of TAK-187 in patients with Chagas disease. “We must now examine the safety and effectiveness of therapeutic doses of this drug and determine the optimal administration schedule, the treatment duration, and its possible combination with other drugs,” said Basombrio, who started studying the disease 28 years ago because it is so prevalent in his homeland of Argentina.

Takeda Chemical Company, the largest pharmaceutical manufacturer in Japan, has patented TAK-187 as a systemic antifungal agent. “The clinical development of this compound as an anti-T-cruzi agent in humans will depend on legal and economic agreements with Takeda, which are being sought through the World Health Organization,” said Urbina.

The Venezuelan started doing basic research on Chagas disease 25 years ago, concerned by the neglect of this tropical disease by the pharmaceutical industry and most academic research centers in Latin America and throughout the world. “Only one percent of the new drugs introduced to the market in the last 25 years were developed to treat tropical diseases, despite the enormous unmet need for such compounds,” he said. “Only 10 percent of current global health research is directed to address the medical needs of 90 percent of the human population.”

Jennifer Donovan | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>