Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The transparent organism: EMBLEM and Carl Zeiss give labs a unique look at life

01.04.2005


A novel high-tech microscope will be brought to the marketplace, giving laboratories everywhere fascinating new insights into living organisms. EMBLEM Technology Transfer GmbH (EMBLEM), the commercial entity of the European Molecular Biology Laboratory (EMBL), announced today that it has signed a licensing deal with technological leader Carl Zeiss to commercialise a new technology called SPIM (Selective Plane Illumination Microscopy).



“Microscopes have to evolve to keep up with the demands of modern science,” says Ernst Stelzer, whose group at EMBL developed SPIM. “Molecular biology has graduated upwards from studying single molecules – now we need to watch complex, three-dimensional processes in whole, living organisms. SPIM allows us to do that with unprecedented quality.”

In a series of technical innovations, Stelzer and his colleagues (in particular Jim Swoger and Jan Huisken) have made it possible to make three-dimensional films of the inner workings of living organisms at a much higher level of detail than ever before.


One innovation of SPIM is the illumination of a sample from the side rather than along the traditional view of the microscope lens. This eliminates a problem that has plagued three-dimensional microscopy in the past: researchers could obtain excellent resolution in the plane of the microscope slide, but resolution along the direction of the viewer was very fuzzy. In SPIM, a sample is passed through a thin sheet of light, capturing high-quality images layer-by-layer. The sample can be rotated and viewed along different directions, further eliminating the blurry and unwanted light which prevented scientists from looking deep into tissues in the past. The entire procedure is very fast and in a computer supported post-processing step, one or more stacks of images are assembled into a high-resolution film.

Another advantage of SPIM is that the specimen is kept alive in a liquid-filled chamber, allowing scientists to track developmental processes like the formation of eyes and the brain in embryonic fish or other model organisms.

The presentation of SPIM at scientific conferences has generated a flood of requests for the instrument. “We were extremely pleased to have found Carl Zeiss as an excellent partner to translate this technology into a product,” says Dr. Martin Raditsch, Deputy Managing Director of EMBLEM.

EMBL Director-General Prof. Fotis Kafatos and EMBL Group Leader Dr. Ernst Stelzer met with the Member of the Executive Board of the Carl Zeiss Group, Dr. Norbert Gorny and with the Executive Vice President & General Manager of the Business Group Microscopy from Carl Zeiss, Dr. Ulrich Simon, last month to finalize the details. “We see the SPIM technology as an ideal approach for satisfying the growing demand in highly resolved image information from living organisms. The products based on this technology will form a perfect match with our lines of confocal and multiphoton 3D-imaging systems,” says Dr. Simon.

The agreement between EMBL and Carl Zeiss includes a common cooperation project for method optimization and product development.

Trista Dawson | alfa
Further information:
http://www.embl.org/aboutus/news/press/2005/press31mar05.html

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>