Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The transparent organism: EMBLEM and Carl Zeiss give labs a unique look at life

01.04.2005


A novel high-tech microscope will be brought to the marketplace, giving laboratories everywhere fascinating new insights into living organisms. EMBLEM Technology Transfer GmbH (EMBLEM), the commercial entity of the European Molecular Biology Laboratory (EMBL), announced today that it has signed a licensing deal with technological leader Carl Zeiss to commercialise a new technology called SPIM (Selective Plane Illumination Microscopy).



“Microscopes have to evolve to keep up with the demands of modern science,” says Ernst Stelzer, whose group at EMBL developed SPIM. “Molecular biology has graduated upwards from studying single molecules – now we need to watch complex, three-dimensional processes in whole, living organisms. SPIM allows us to do that with unprecedented quality.”

In a series of technical innovations, Stelzer and his colleagues (in particular Jim Swoger and Jan Huisken) have made it possible to make three-dimensional films of the inner workings of living organisms at a much higher level of detail than ever before.


One innovation of SPIM is the illumination of a sample from the side rather than along the traditional view of the microscope lens. This eliminates a problem that has plagued three-dimensional microscopy in the past: researchers could obtain excellent resolution in the plane of the microscope slide, but resolution along the direction of the viewer was very fuzzy. In SPIM, a sample is passed through a thin sheet of light, capturing high-quality images layer-by-layer. The sample can be rotated and viewed along different directions, further eliminating the blurry and unwanted light which prevented scientists from looking deep into tissues in the past. The entire procedure is very fast and in a computer supported post-processing step, one or more stacks of images are assembled into a high-resolution film.

Another advantage of SPIM is that the specimen is kept alive in a liquid-filled chamber, allowing scientists to track developmental processes like the formation of eyes and the brain in embryonic fish or other model organisms.

The presentation of SPIM at scientific conferences has generated a flood of requests for the instrument. “We were extremely pleased to have found Carl Zeiss as an excellent partner to translate this technology into a product,” says Dr. Martin Raditsch, Deputy Managing Director of EMBLEM.

EMBL Director-General Prof. Fotis Kafatos and EMBL Group Leader Dr. Ernst Stelzer met with the Member of the Executive Board of the Carl Zeiss Group, Dr. Norbert Gorny and with the Executive Vice President & General Manager of the Business Group Microscopy from Carl Zeiss, Dr. Ulrich Simon, last month to finalize the details. “We see the SPIM technology as an ideal approach for satisfying the growing demand in highly resolved image information from living organisms. The products based on this technology will form a perfect match with our lines of confocal and multiphoton 3D-imaging systems,” says Dr. Simon.

The agreement between EMBL and Carl Zeiss includes a common cooperation project for method optimization and product development.

Trista Dawson | alfa
Further information:
http://www.embl.org/aboutus/news/press/2005/press31mar05.html

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>