Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To train the eye, keep it simple

31.03.2005


Researchers find that human eyes learn best in an uncluttered setting



If athletes, soldiers and drivers must perform every day in visually messy environments, common sense suggests that any visual training they receive should include distractions and disorder. New research from the University of Southern California and UC Irvine suggests common sense is wrong in this case.

The human vision system learns best in "clear display" conditions without visual noise, said co-authors Zhong-Lin Lu and Barbara Anne Dosher. Their findings appear in a pair of articles in the current issue of PNAS. The research has long-range implications for rehabilitation therapy, treatment of individuals with "lazy eye" or related disorders and training of soldiers, police officers and other personnel who must make split-second decisions in chaotic situations. "Now you can simplify training a lot," said Lu, a professor of psychology in the USC College of Letters, Arts and Sciences. "Soldiers, for example, have to operate with goggles and all kinds of (visual) devices. Pilots have other kinds of goggles, video displays. They operate in different environments with different kinds of noise and different kinds of interference." "What these results show is, in fact, you only need to train them in a clear display environment."


In their studies, Lu and Dosher asked subjects to identify the orientation of simple geometric patterns flashed on a screen. The subjects’ performance improved dramatically after several sessions, in line with other studies that have shown the human eye to be highly trainable. The difference came in the way subjects adapted to different environments. Those subjects who were trained with clear displays also showed improvement with noisy displays. The reverse was not true: Subjects trained with noisy displays performed no better with clear displays. "That was a huge surprise to us," Lu said. "High noise training comes for free."

The researchers believe that noisy displays impose an artificial limit on a subject’s potential improvement. The roughness of the image trains the eye’s "filtering" ability but also masks the internal flaws of the visual system.

In clear display training, by contrast, the eye can focus entirely on reducing the intrinsic noise of human visual processes (the researchers refer to this process as "stimulus enhancement"). In addition, Lu said, clear display training may strengthen image recognition by improving perceptual templates.

The results also suggest that the two types of perceptual learning studied – noise filtering and stimulus enhancement – take place in different areas of the visual system. By training each eye separately, Lu, USC graduate student Wilson Chu, Dosher and USC undergraduate Sophia Lee found that noise filtering transferred completely from the trained eye to the untrained eye. Stimulus enhancement transferred only partially.

This implies that noise filtering is a "binocular" mechanism that serves both eyes at once, the researchers propose. Stimulus enhancement, on the other hand, is "monocular": The eye that is trained receives most of the benefit.

The researchers concluded that for optimal training, each eye should be trained separately in clear displays.

"Then you’re done," Lu said.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>