Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To train the eye, keep it simple

31.03.2005


Researchers find that human eyes learn best in an uncluttered setting



If athletes, soldiers and drivers must perform every day in visually messy environments, common sense suggests that any visual training they receive should include distractions and disorder. New research from the University of Southern California and UC Irvine suggests common sense is wrong in this case.

The human vision system learns best in "clear display" conditions without visual noise, said co-authors Zhong-Lin Lu and Barbara Anne Dosher. Their findings appear in a pair of articles in the current issue of PNAS. The research has long-range implications for rehabilitation therapy, treatment of individuals with "lazy eye" or related disorders and training of soldiers, police officers and other personnel who must make split-second decisions in chaotic situations. "Now you can simplify training a lot," said Lu, a professor of psychology in the USC College of Letters, Arts and Sciences. "Soldiers, for example, have to operate with goggles and all kinds of (visual) devices. Pilots have other kinds of goggles, video displays. They operate in different environments with different kinds of noise and different kinds of interference." "What these results show is, in fact, you only need to train them in a clear display environment."


In their studies, Lu and Dosher asked subjects to identify the orientation of simple geometric patterns flashed on a screen. The subjects’ performance improved dramatically after several sessions, in line with other studies that have shown the human eye to be highly trainable. The difference came in the way subjects adapted to different environments. Those subjects who were trained with clear displays also showed improvement with noisy displays. The reverse was not true: Subjects trained with noisy displays performed no better with clear displays. "That was a huge surprise to us," Lu said. "High noise training comes for free."

The researchers believe that noisy displays impose an artificial limit on a subject’s potential improvement. The roughness of the image trains the eye’s "filtering" ability but also masks the internal flaws of the visual system.

In clear display training, by contrast, the eye can focus entirely on reducing the intrinsic noise of human visual processes (the researchers refer to this process as "stimulus enhancement"). In addition, Lu said, clear display training may strengthen image recognition by improving perceptual templates.

The results also suggest that the two types of perceptual learning studied – noise filtering and stimulus enhancement – take place in different areas of the visual system. By training each eye separately, Lu, USC graduate student Wilson Chu, Dosher and USC undergraduate Sophia Lee found that noise filtering transferred completely from the trained eye to the untrained eye. Stimulus enhancement transferred only partially.

This implies that noise filtering is a "binocular" mechanism that serves both eyes at once, the researchers propose. Stimulus enhancement, on the other hand, is "monocular": The eye that is trained receives most of the benefit.

The researchers concluded that for optimal training, each eye should be trained separately in clear displays.

"Then you’re done," Lu said.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>