Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Urine helps infectious yeast stick

31.03.2005


Researchers from Johns Hopkins and the University of Maryland have discovered that urine actually helps a particular yeast stick to cells along the urinary tract. The finding might offer a new way to prevent or treat certain yeast and fungal infections, and the researchers’ work also provides an unexpected new role for some proteins already known to help hungry yeast live longer.



Writing in the March 18 issue of Science, the researchers report that the yeast Candida glabrata use a family of proteins called sirtuins to block access to genes that would otherwise help the yeast stick. The sirtuins, which also help regulate the organism’s lifespan, require niacin, or vitamin B3, to work. But urine has only tiny amounts of niacin, so the sirtuins don’t work, the genes are exposed, and the yeast can make the proteins that help it stick to cells in the urinary tract, the researchers discovered.

C. glabrata and its cousin C. albicans cause infections in blood and in mucosal tissues such as the urinary tract and vagina. C. glabrata is the second leading cause (behind C. albicans) of yeast infections, or candidiasis, in people with urinary catheters. Unlike some other yeast, C. glabrata can’t make niacin and instead has to import it from its surroundings.


"This particular yeast has in some sense committed to living with the human host and so it takes advantage of us to provide certain key nutrients," says Brendan Cormack, Ph.D., professor of molecular biology and genetics in Johns Hopkins’ Institute for Basic Biomedical Sciences.

"It turns out that there’s enough niacin in blood to keep the yeast’s adhesion-promoting genes turned off, we discovered," he adds. "But in urine and perhaps other host environments, there is such a limited amount of niacin that these genes are turned on, allowing the organism to stick to host cells."

The new study builds on the lab’s discovery in 1999 that C. glabrata sticks to cells that line mucosal tissues and blood vessels thanks to the products of genes dubbed EPAs by Cormack’s team. Then, in 2003, postdoctoral fellows Alejandro De Las Peñas and Irene Castaño discovered that yeast missing the gene for Sir3 were super-sticky.

"Among other things, Sir3 and specific other proteins attach themselves near the tips of chromosomes, obscuring the nearby genes," says Cormack. "It turns out that the yeast’s adhesion-promoting genes are near the chromosome tips and are usually silenced by this process. In yeast missing Sir3, the EPA genes were exposed and used."

The researchers’ latest work demonstrates that environmental influences -- not just the engineered loss of a gene -- can dictate whether the yeast can use these EPA genes. The environment’s effect on these genes helps the organism recognize a good place to colonize, says Cormack.

In the new work, graduate student Renee Domergue studied C. glabrata she had engineered to become permanently drug-resistant if the adhesion-promoting genes got turned on, which would only happen if Sir3 and the other proteins had stopped covering them up for some reason.

No drug resistance developed in blood, but Domergue did detect it in a mouse model of bladder infection that had been developed by collaborator David Johnson of the University of Maryland School of Medicine. Turning to laboratory dishes again, Domergue discovered that the yeast rapidly became drug-resistant (indicating the adhesion-promoting genes had been turned on) when they were grown in artificial urine -- a mix of specific chemicals in known amounts.

"We then tested each of the components of the urine, but none triggered the switch," says Cormack. "So the trigger was actually something that was ’limiting’ in the urine, that is, it was present in only tiny amounts -- the vitamin niacin."

Niacin, also known as nicotinic acid, is used by cells to make an important molecule called NAD+ for short. NAD+ binds to sirtuins and is required for them to work properly. (Johns Hopkins scientist Cynthia Wolberger and colleagues recently showed how this happens.) Without niacin, these yeast can’t make NAD+, and so the sirtuins don’t block access to the EPA genes, the researchers report.

Other researchers have reported that the EPA genes also help C. glabrata stick to plastic, which might explain the organism’s propensity to cause catheter infections.

"We don’t know whether niacin supplements might help prevent these catheter infections, or whether the plastic could be treated somehow to reduce the organism’s ability to bind to it. But there can be significant liver toxicity associated with niacin supplements, so the question would have to be studied very carefully," cautions Cormack.

Not all yeast would be affected by the lack of niacin in the same way, because some, like the popular laboratory yeast S. cerevisiae, can make niacin themselves, and others don’t use sirtuins to regulate their adhesion-promoting genes.

The research was funded by the National Institute of Diabetes and Digestive and Kidney Diseases and the National Institute of Allergy and Infectious Disease. Authors on the paper are Domergue, Castaño, De Las Peñas, Cormack and Margaret Zupancic of Johns Hopkins; and Virginia Lockatell, Richard Habel and Johnson of the University of Maryland School of Medicine. Castaño and De Las Peñas are now at the Instituto Potosino de Investigacion Cientifica y Tecnologica, San Luis Potosi, Mexico.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.sciencemag.org

More articles from Health and Medicine:

nachricht Observing the cell's protein factories during self-assembly
15.06.2018 | Charité - Universitätsmedizin Berlin

nachricht Scientists unravel molecular mechanisms of Parkinson's disease
13.06.2018 | The Francis Crick Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>