Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel therapy tested in mice could chase away cat allergies

29.03.2005


A molecule designed to block cat allergies successfully prevented allergic reactions in laboratory mice, as well as in human cells in a test tube, University of California, Los Angeles (UCLA) researchers report in the April issue of Nature Medicine, available online now. In the future, the investigators say, these promising results could lead to a new therapy not only for human cat allergies, but also possibly for severe food allergies such as those to peanuts.



The National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, funded the research. "This novel approach to treating cat allergies is encouraging news for millions of cat-allergic Americans. Moreover, these results provide proof-of-concept for using this approach to develop therapies to prevent deadly food allergy reactions as well," says NIAID Director Anthony S. Fauci, M.D.

The injectable treatment puts a brake on the release of a key chemical from cells involved in cat allergy reactions. That chemical, histamine, brings on allergy symptoms such as sneezing, wheezing, itching, watery eyes and sometimes asthma. When a cat-allergic person touches or inhales a protein found in cat saliva or dander (small scales from skin or hair), key immune system cells respond by spewing out histamine. Allergy experts estimate that 14 percent of children 6 to 19 years old are allergic to cats.


The treatment comprises a molecule that loosely tethers a feline and a human protein together. The feline end is the notorious protein (called Fel d1) found in cat dander and saliva that causes so much misery in allergy sufferers. On the other end sits a piece of human antibody (called IgG Fcƒ×1) that docks to a cell receptor that can be recruited to stop allergic reactions.

The investigators named the chimeric molecule GFD, or gamma Feline domesticus, for its human and feline parts, explains principal investigator Andrew Saxon, M.D., of UCLA. The cat allergen end of GFD binds to antibodies on the surface of the cell. The human end of GFD links to a different cell surface protein (called Fcƒ×RIIB) that interrupts the allergic response.

Dr. Saxon and his colleagues first tested GFD in blood donated by people allergic to cats. They cultured blood cells with either GFD or with a purified human antibody as a control. Then they added the cat protein that triggers allergic reactions to all the blood cell cultures.

"We measured more than 90 percent less histamine in the cultures with GFD," says Dr. Saxon. "Those results suggested that GFD successfully prevented the immune cells from reacting to cat allergen. The next step was to test GFD in mice that we had made allergic to the allergenic protein found in cat saliva and dander."

The researchers tested GFD in two different types of allergic mice. One set was genetically engineered to have human cat-allergy cell receptors. These mice were "passively allergic" to cats: they would react to cat protein only after the scientists first injected them with human allergic antibodies to cats. When these mice were then injected with cat allergen, GFD blocked the allergic reaction involving the human cell receptors, an indication that it might also work in people.

Scientists made another set of mice allergic to cats by injecting them with cat protein and an immune system booster. These mice became "actively allergic" to cats: their reactions to cat allergen would be comparable to reactions in a cat-allergic person. Scientists injected some of these mice with GFD, and then injected cat allergen into the windpipes of all the mice, including a control group that was not allergic to cats. GFD damped asthma-like and other allergic reactions in the cat-allergic mice: reactions in the mice that received GFD were similar to the control group mice that were not allergic to cats.

The molecule has the potential to prevent allergic reactions long after injections cease, Dr. Saxon says. However, further research and clinical testing would be required before it might be used in humans. He also is interested in applying this approach to develop a preventive treatment for serious food allergies.

NIAID is a component of the National Institutes of Health, an agency of the U.S. Department of Health and Human Services. NIAID supports basic and applied research to prevent, diagnose and treat infectious diseases such as HIV/AIDS and other sexually transmitted infections, influenza, tuberculosis, malaria and illness from potential agents of bioterrorism. NIAID also supports research on transplantation and immune-related illnesses, including autoimmune disorders, asthma and allergies.

Linda Joy | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>