Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain imaging study may hold clues to onset of schizophrenia in people at high risk

17.03.2005


Images of brain activity may hold clues to the onset of schizophrenia in people at high risk for the disease, according to a study headed by psychiatry researchers at the University of North Carolina at Chapel Hill School of Medicine.
The new findings appear in the March issue of the Archives of General Psychiatry, a journal of the American Medical Association.

A decline in function in the prefrontal cortex, the "executive" or front part of the brain, is present in high-risk individuals experiencing early symptoms of schizophrenia and may reflect biological changes that precede the onset of diagnosable illness, the study indicates.


Identifying such changes prior to disease onset also may prove useful in determining vulnerability to schizophrenia onset, particularly in those at high risk for the disease, the researchers said. "We know that individuals who experience symptoms that occur before the disease becomes full-blown demonstrate impaired performance in tasks requiring executive function, attention and working memory, but the neurobiological bases of this remains unclear," said Dr. Aysenil Belger, the study’s senior author. "In looking at the brain activity of high-risk people while they performed some of these tasks, we hoped to identify a neurobiological marker of vulnerability to disease onset, a tool we might use to help assess their risk of developing psychotic symptoms," Belger said. "If such a tool became established, perhaps we could intervene early on in some way to improve whatever pathology it showed." Belger is an associate professor of psychiatry in UNC’s School of Medicine and of psychology in UNC’s College of Arts and Sciences.

The study involved functional magnetic resonance imaging, or fMRI. Unlike standard MRI scans that show anatomical structures in black and white, fMRI offers digitally enhanced color images of brain function, depicting localized changes in blood flow and oxygenation. When particular regions of the brain increase their neural activity in association with various actions or thought processes, they emit enhanced blood oxygen level dependent signals. The signals can be localized in the brain and translated into digital images that portray neural activity level as a ratio of oxygenated to de-oxygenated hemoglobin, the iron-containing pigment in red blood cells. Researchers then can quantify these signals to generate maps of various brain functions.

Fifty-two study participants were divided into four groups: "ultra-high-risk," where participants experience symptoms but the illness is not full-blown; early schizophrenia, where participants have had the illness less than five years; chronic schizophrenia, where participants have had the illness for more than five years; and healthy age-matched "controls," for comparison.

Those at ultra-high-risk had been pre-screened for schizophrenia symptoms, revealing that some were showing early emotional, affective and cognitive symptoms such as the blunting of emotion, poor personal relationships, poor hygiene, emotional detachment and false beliefs.

While undergoing fMRI scans, all participants responded to an executive decision test - so-called because decision making and task-appropriate response selection are required - displayed on a computer screen. This test, developed by the study team, requires push-button responses to certain colored squares, circles and objects from everyday life. Each visual cue is presented at a fraction of a second against a white background, and participants must ignore an auditory tone sounded when each cue is presented. "Of particular interest was the neural activity generated by a series of infrequent circles that were designated as ’target’ events, which participants were instructed to detect and respond to as quickly as possible by pressing a button," Belger said. "Accurate and fast performance on this test requires both the maintenance of attention and vigilance, as well as the ability to rapidly discriminate between target events and other non-target distracters, such as the colored squares and objects."

The scanner mapped participants’ neural activity in specific brain areas before, during and after the presentation of the visual target events. "Our goal was to see if the high-risk individuals showed normal brain activity during these executive tasks or whether or not they showed some of the pathology of individuals who already have schizophrenia," Belger said.

The researchers found that when the healthy people make these types of detections and decisions, they activate frontal and mid-brain regions. Chronic schizophrenia patients showed a significant drop in activation of these regions, "thus it appears that they fail to engage these frontal regions," said Belger. "And we found that the high-risk group and early, or first-episode, schizophrenia group are somewhere in between: It looks like these deficits begin even before they are diagnosed and treated. It suggests that this area of the brain that’s important for executive decision-making processes is already altered before disease onset."

The preliminary study represents a "first pass" at determining feasibility of the tool to map tiny differences between patients and controls, Belger said. "We need to show that the tool is reliable and that, indeed, it’s detecting something in the population that it’s not detecting in healthy individuals," she added. "This is also a cross-sectional study, a comparison between groups. It’s not longitudinal, as we did not study the same individuals over time. Still, the findings are intriguing; they are suggestive. We still need to know how they actually correlate with schizophrenia onset."

Belger’s UNC co-authors were Dr. Jeffrey Lieberman, who recently left UNC to become chairman of psychiatry at Columbia University; Dr. Diana Perkins, professor of psychiatry, and Dr. Seniha Inan, postdoctoral fellow in psychiatry. Belger, Inan and Dr. Rajendra Morey, clinical associate in psychiatry and behavioral sciences at Duke University Medical Center, are also with the Duke-UNC Brain Imaging and Analysis Center. Dr. Teresa Mitchell, also a co-author, is assistant professor of psychiatry at the University of Massachusetts Medical School.

L.H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>