Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Brain imaging study may hold clues to onset of schizophrenia in people at high risk


Images of brain activity may hold clues to the onset of schizophrenia in people at high risk for the disease, according to a study headed by psychiatry researchers at the University of North Carolina at Chapel Hill School of Medicine.
The new findings appear in the March issue of the Archives of General Psychiatry, a journal of the American Medical Association.

A decline in function in the prefrontal cortex, the "executive" or front part of the brain, is present in high-risk individuals experiencing early symptoms of schizophrenia and may reflect biological changes that precede the onset of diagnosable illness, the study indicates.

Identifying such changes prior to disease onset also may prove useful in determining vulnerability to schizophrenia onset, particularly in those at high risk for the disease, the researchers said. "We know that individuals who experience symptoms that occur before the disease becomes full-blown demonstrate impaired performance in tasks requiring executive function, attention and working memory, but the neurobiological bases of this remains unclear," said Dr. Aysenil Belger, the study’s senior author. "In looking at the brain activity of high-risk people while they performed some of these tasks, we hoped to identify a neurobiological marker of vulnerability to disease onset, a tool we might use to help assess their risk of developing psychotic symptoms," Belger said. "If such a tool became established, perhaps we could intervene early on in some way to improve whatever pathology it showed." Belger is an associate professor of psychiatry in UNC’s School of Medicine and of psychology in UNC’s College of Arts and Sciences.

The study involved functional magnetic resonance imaging, or fMRI. Unlike standard MRI scans that show anatomical structures in black and white, fMRI offers digitally enhanced color images of brain function, depicting localized changes in blood flow and oxygenation. When particular regions of the brain increase their neural activity in association with various actions or thought processes, they emit enhanced blood oxygen level dependent signals. The signals can be localized in the brain and translated into digital images that portray neural activity level as a ratio of oxygenated to de-oxygenated hemoglobin, the iron-containing pigment in red blood cells. Researchers then can quantify these signals to generate maps of various brain functions.

Fifty-two study participants were divided into four groups: "ultra-high-risk," where participants experience symptoms but the illness is not full-blown; early schizophrenia, where participants have had the illness less than five years; chronic schizophrenia, where participants have had the illness for more than five years; and healthy age-matched "controls," for comparison.

Those at ultra-high-risk had been pre-screened for schizophrenia symptoms, revealing that some were showing early emotional, affective and cognitive symptoms such as the blunting of emotion, poor personal relationships, poor hygiene, emotional detachment and false beliefs.

While undergoing fMRI scans, all participants responded to an executive decision test - so-called because decision making and task-appropriate response selection are required - displayed on a computer screen. This test, developed by the study team, requires push-button responses to certain colored squares, circles and objects from everyday life. Each visual cue is presented at a fraction of a second against a white background, and participants must ignore an auditory tone sounded when each cue is presented. "Of particular interest was the neural activity generated by a series of infrequent circles that were designated as ’target’ events, which participants were instructed to detect and respond to as quickly as possible by pressing a button," Belger said. "Accurate and fast performance on this test requires both the maintenance of attention and vigilance, as well as the ability to rapidly discriminate between target events and other non-target distracters, such as the colored squares and objects."

The scanner mapped participants’ neural activity in specific brain areas before, during and after the presentation of the visual target events. "Our goal was to see if the high-risk individuals showed normal brain activity during these executive tasks or whether or not they showed some of the pathology of individuals who already have schizophrenia," Belger said.

The researchers found that when the healthy people make these types of detections and decisions, they activate frontal and mid-brain regions. Chronic schizophrenia patients showed a significant drop in activation of these regions, "thus it appears that they fail to engage these frontal regions," said Belger. "And we found that the high-risk group and early, or first-episode, schizophrenia group are somewhere in between: It looks like these deficits begin even before they are diagnosed and treated. It suggests that this area of the brain that’s important for executive decision-making processes is already altered before disease onset."

The preliminary study represents a "first pass" at determining feasibility of the tool to map tiny differences between patients and controls, Belger said. "We need to show that the tool is reliable and that, indeed, it’s detecting something in the population that it’s not detecting in healthy individuals," she added. "This is also a cross-sectional study, a comparison between groups. It’s not longitudinal, as we did not study the same individuals over time. Still, the findings are intriguing; they are suggestive. We still need to know how they actually correlate with schizophrenia onset."

Belger’s UNC co-authors were Dr. Jeffrey Lieberman, who recently left UNC to become chairman of psychiatry at Columbia University; Dr. Diana Perkins, professor of psychiatry, and Dr. Seniha Inan, postdoctoral fellow in psychiatry. Belger, Inan and Dr. Rajendra Morey, clinical associate in psychiatry and behavioral sciences at Duke University Medical Center, are also with the Duke-UNC Brain Imaging and Analysis Center. Dr. Teresa Mitchell, also a co-author, is assistant professor of psychiatry at the University of Massachusetts Medical School.

L.H. Lang | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>