Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green Tea For Nerve Cells

15.03.2005


In search of vegetable preparations for nervous system diseases prophylaxis and treatment Russian researchers have turned to green tea. Specialists of the Kuban State University, the Kuban Research-and-Production Laboratory of Physiologically Active Substances and the Institute of Brain (Russian Academy of Medical Sciences) have discovered that ethanolic extract of green tea stimulates spinal cord neurons’ regeneration.



Spinal ganglia were cultivated in nutrient medium. Dry extract in different concentrations was added to the medium. The researchers judged on neurons’ state and their capacity for regeneration by the number and length of nerve cell processes. The length and number of processes account for the ‘quality of communication’ between neurons and ultimately the ability of the nervous system section to fulfill its functions. The ability to restore bonds is the rate of cells’ resistance to neurodegenerative diseases, for example, ischemia or Parkinson’s disease.

The green tea extract had the most apparent stimulatory action in concentration of 0.004-0.006 percent. On the second day of cultivation, the number of cell processes started to grow as compared to the background ones, and then the length of cell processes began to increase. On the fourth day of experiment, the difference between the background and experimental groups was maximum both in terms of processes number and length. On the fifth day, the green tea extract effect disappeared.


Lower concentrations of the preparation also change the growth characteristics of spinal cord neurons, but not to a great extent. Overdoing with green tea makes no good. Double increase of extract concentration would not give any effect whatsoever, but when the concentration was increased by 10 times as compared to the optimal one, 85 percent of cells died. The remaining neurons had almost no processes.

Previously, the Kuban physicians had showed that extracts of the Baikal scullcap (Scutellaria baicalensis Georgi) had the same effect on nervous cells’ regeneration. However, tea is a more widespread plant. Apparently, healing power of green tea is caused by high antioxidant content - flavonoids, polyphenols, as well as theanine and vitamins.

Results of the investigation carried out by the Krasnodar scientists, who were the first to demonstrate the stimulatory action of green tea extract on nerve cells’ regeneration have been contributed by findings of researchers from other countries. It is known that theanine injection into ventricles of brain of Mongolian Gerbil (Meriones unguiculatus) prevents destruction of brain neurons in case of ischemia. Intraperitoneal injection of polyphenols also protects nerve cells. Various components of green tea prevent development of laboratory Parkinson’s disease with mice.

Green tea belongs to the group of food substances that avert the nitric oxide abundant synthesis, which can be the cause of neurodegenerative diseases. Of undoubted interest are the recent investigations by foreign researchers that showed anticarcinogenic effect of tea polyphenols. However, there are no sufficient clinical data to prove this effect, therefore investigations in this area need to be continued. Naturally, the researchers working in the capital of the Russian tea cannot stay aside from that.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>