Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green Tea For Nerve Cells

15.03.2005


In search of vegetable preparations for nervous system diseases prophylaxis and treatment Russian researchers have turned to green tea. Specialists of the Kuban State University, the Kuban Research-and-Production Laboratory of Physiologically Active Substances and the Institute of Brain (Russian Academy of Medical Sciences) have discovered that ethanolic extract of green tea stimulates spinal cord neurons’ regeneration.



Spinal ganglia were cultivated in nutrient medium. Dry extract in different concentrations was added to the medium. The researchers judged on neurons’ state and their capacity for regeneration by the number and length of nerve cell processes. The length and number of processes account for the ‘quality of communication’ between neurons and ultimately the ability of the nervous system section to fulfill its functions. The ability to restore bonds is the rate of cells’ resistance to neurodegenerative diseases, for example, ischemia or Parkinson’s disease.

The green tea extract had the most apparent stimulatory action in concentration of 0.004-0.006 percent. On the second day of cultivation, the number of cell processes started to grow as compared to the background ones, and then the length of cell processes began to increase. On the fourth day of experiment, the difference between the background and experimental groups was maximum both in terms of processes number and length. On the fifth day, the green tea extract effect disappeared.


Lower concentrations of the preparation also change the growth characteristics of spinal cord neurons, but not to a great extent. Overdoing with green tea makes no good. Double increase of extract concentration would not give any effect whatsoever, but when the concentration was increased by 10 times as compared to the optimal one, 85 percent of cells died. The remaining neurons had almost no processes.

Previously, the Kuban physicians had showed that extracts of the Baikal scullcap (Scutellaria baicalensis Georgi) had the same effect on nervous cells’ regeneration. However, tea is a more widespread plant. Apparently, healing power of green tea is caused by high antioxidant content - flavonoids, polyphenols, as well as theanine and vitamins.

Results of the investigation carried out by the Krasnodar scientists, who were the first to demonstrate the stimulatory action of green tea extract on nerve cells’ regeneration have been contributed by findings of researchers from other countries. It is known that theanine injection into ventricles of brain of Mongolian Gerbil (Meriones unguiculatus) prevents destruction of brain neurons in case of ischemia. Intraperitoneal injection of polyphenols also protects nerve cells. Various components of green tea prevent development of laboratory Parkinson’s disease with mice.

Green tea belongs to the group of food substances that avert the nitric oxide abundant synthesis, which can be the cause of neurodegenerative diseases. Of undoubted interest are the recent investigations by foreign researchers that showed anticarcinogenic effect of tea polyphenols. However, there are no sufficient clinical data to prove this effect, therefore investigations in this area need to be continued. Naturally, the researchers working in the capital of the Russian tea cannot stay aside from that.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>