Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dopamine study sheds new light on drug addiction

04.03.2005


A paper published in today’s issue of Science has challenged beliefs about the role of dopamine in the brain, which could lead to new treatments for Parkinson’s disease, schizophrenia and drug addiction. The research suggests that dopamine has a far wider, less specialised role than previously hypothesised.

The paper, written by experts at the University of Sheffield and Macquarie University in Sydney, focused on the role of dopamine as a neurotransmitter. Researchers sought to determine the information that dopamine containing cells pass on to the structures in the brain that receive their message.

Dr Paul Overton, co-author of the study explains, “Less than one per cent of the neurons in the brain use dopamine as a neurotransmitter, but any change in its levels can have devastating effects. Too much dopamine can lead to schizophrenia, whereas not enough causes Parkinson’s Disease. Drug addicts also have a malfunction in their dopamine systems, so learning more about the way this chemical works could lead to better treatments for a range of conditions.”



“The dominant theory in the field suggested that the dopamine message carries information specifically about reward. Brain systems involved in reward fulfil a vital function in that they underpin the motivation to seek out food, water and all of the other things that we need to survive, and play a central role in learning. We tend to do more of the things that lead to nice outcomes – that is, we learn to according to the effect that our actions have”.

“Much of the previous work concerning dopamine and reward has used visual ‘stimuli’. So, our team focused on the visual responsiveness of dopamine cells and, rather than decoding the dopamine message itself, we looked at the message that the dopamine cells were being given by other bits of the brain to pass on”.

“We found that the visual information that the dopamine message carries is provided by the superior colliculus, which is one of the oldest parts of the visual system in terms of evolution. The colliculus is the brain’s ‘burglar alarm’, and hence the visual response properties of its cells are fairly primitive. We concluded that it is unlikely that such a visually primitive structure would be allowed (by evolution) to provide the sensory input to a system which was involved in something as vital as reward. Instead, we propose that, as a burglar alarm, the colliculus provides information to dopamine cells about the occurrence of biologically important stimuli, which then pass this ‘salience’ based signal to other brain areas. In other words, the remit of the dopamine message goes beyond reward to include all stimuli which are pertinent to the animal’s survival”.

“This conclusion has particular relevance to people suffering from drug addiction. It could explain why a dopamine malfunction can make it so hard for addicts to stay ‘on the wagon’ when they are around their drug of choice. Basically, the dopamine malfunction, enhancing stimulus salience, could cause the brain to be unable to ignore stimuli associated with the drug, causing relapse and cravings.”

Lorna Branton | alfa
Further information:
http://www.shef.ac.uk

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>