Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Dopamine study sheds new light on drug addiction


A paper published in today’s issue of Science has challenged beliefs about the role of dopamine in the brain, which could lead to new treatments for Parkinson’s disease, schizophrenia and drug addiction. The research suggests that dopamine has a far wider, less specialised role than previously hypothesised.

The paper, written by experts at the University of Sheffield and Macquarie University in Sydney, focused on the role of dopamine as a neurotransmitter. Researchers sought to determine the information that dopamine containing cells pass on to the structures in the brain that receive their message.

Dr Paul Overton, co-author of the study explains, “Less than one per cent of the neurons in the brain use dopamine as a neurotransmitter, but any change in its levels can have devastating effects. Too much dopamine can lead to schizophrenia, whereas not enough causes Parkinson’s Disease. Drug addicts also have a malfunction in their dopamine systems, so learning more about the way this chemical works could lead to better treatments for a range of conditions.”

“The dominant theory in the field suggested that the dopamine message carries information specifically about reward. Brain systems involved in reward fulfil a vital function in that they underpin the motivation to seek out food, water and all of the other things that we need to survive, and play a central role in learning. We tend to do more of the things that lead to nice outcomes – that is, we learn to according to the effect that our actions have”.

“Much of the previous work concerning dopamine and reward has used visual ‘stimuli’. So, our team focused on the visual responsiveness of dopamine cells and, rather than decoding the dopamine message itself, we looked at the message that the dopamine cells were being given by other bits of the brain to pass on”.

“We found that the visual information that the dopamine message carries is provided by the superior colliculus, which is one of the oldest parts of the visual system in terms of evolution. The colliculus is the brain’s ‘burglar alarm’, and hence the visual response properties of its cells are fairly primitive. We concluded that it is unlikely that such a visually primitive structure would be allowed (by evolution) to provide the sensory input to a system which was involved in something as vital as reward. Instead, we propose that, as a burglar alarm, the colliculus provides information to dopamine cells about the occurrence of biologically important stimuli, which then pass this ‘salience’ based signal to other brain areas. In other words, the remit of the dopamine message goes beyond reward to include all stimuli which are pertinent to the animal’s survival”.

“This conclusion has particular relevance to people suffering from drug addiction. It could explain why a dopamine malfunction can make it so hard for addicts to stay ‘on the wagon’ when they are around their drug of choice. Basically, the dopamine malfunction, enhancing stimulus salience, could cause the brain to be unable to ignore stimuli associated with the drug, causing relapse and cravings.”

Lorna Branton | alfa
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>