Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fewer false alarms when mammographers have greater experience screening healthy breasts

02.03.2005


Physicians who specialize in screening mammography and who have at least 25 years of experience are more accurate at interpreting the images and subject fewer women to the anxiety of false positives for cancer, when compared to physicians with less experience or those who don’t have the same focus, according to a new study. The research was led by a UCSF team and is published in the March 2 issue of the Journal of the National Cancer Institute.

Screening mammograms are the type most women get. These images are designed to discover any cancer that might be hidden in women with no breast symptoms. Women who have a history of breast cancer or other symptoms -- or who experience symptoms at the time of their exam -- receive diagnostic mammograms. After two to five asymptomic years, their physicians will usually revert to screening mammography.

Study findings showed that the more experienced physicians not only properly identified cancer, they also were 50 percent less likely to falsely characterize a mammogram as abnormal. In addition, the study found dramatic variability in physician accuracy. For example, physicians on average detected 77 percent of cancers, but for individual physicians the detection rate ranged from 29-97 percent. The average false positive rate was 10 percent, while the rate for individual physicians ranged from 1-29 percent.



According to the UCSF researchers, it has already been well documented in scientific literature that patient characteristics -- such as breast tissue density -- can be negatively associated with mammogram accuracy and those characteristics largely cannot be changed. They chose, therefore, to focus their study on what physician characteristics could be associated with accuracy. They studied more than 1.2 million mammograms paired with data from statewide cancer registries in four states.

The study found that physicians who read a greater number of mammograms identified cancers without mistaking normal tissue for a malignancy with greater accuracy than physicians whose volume was not as high. In general, the false-positive rate declined with increasing physician age, with increasing time since receipt of medical degree, and with increasing annual volume. Additionally, those physicians who focused their practice on screening, as opposed to diagnostic mammography, had a lower false-positive rate.

Study data came from four sites that participate in the National Cancer Institute- funded Breast Cancer Surveillance Consortium. Those sites -- San Francisco, New Mexico, Vermont and Colorado -- prospectively collect mammographic interpretations. Researchers linked the interpretation data to cancer registries and then to physician information from the American Medical Association. They studied 209 physicians who interpreted 1.2 million mammograms from January 1, 1995 through December 31, 2000 including 7143 that were associated with breast cancer.

The minimum number of mammograms a US physician can read and still be considered qualified under FDA regulations is 960 within a two-year period, or approximately 10 mammograms per week, according to the Mammography Quality Standards Act of 1992.

"Raising the annual volume requirements in the Act might improve the overall quality of screening mammography in the US," said principal investigator Rebecca Smith Bindman, MD, UCSF associate professor of radiology, epidemiology/biostatistics, and obstetrics, gynecology and reproductive sciences. She also is director of the UCSF Radiology Outcomes Research Lab and part of the breast oncology program of the UCSF Comprehensive Cancer Center.

The authors hypothesize that physicians who read more mammograms overall and who have been reading them longer develop a higher threshold for identifying cancer and overall do better. Those who read a higher proportion of diagnostic mammograms, they say, may tend to develop a lower threshold, expecting a higher rate of cancer.

"Compared with those who read the minimum number allowed by the Act and who have less focus on screening, physicians who focus on screening and who interpret 2,500-4,000 mammograms annually have 50 percent fewer false-positive diagnoses while detecting approximately one less cancer per 2,500 mammograms," the authors wrote.

Smith Bindman added, "The variation we found was dramatic. We recommend explicit discussion of what the goals of mammography should be, and sooner rather than later."

If the goal is to maximize the identification of cancer while achieving a reasonable false-positive rate, raising the minimum required under the Act would make sense, according to Smith-Bindman. Although fewer doctors would subsequently be available for reading mammograms, any resulting increased barriers to healthcare delivery could be managed, she said. "Change would need to occur slowly to prevent a shortage of physicians. But the payoff would be fewer false alarms for women."

Eve Harris | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>