Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dual testing better for monitoring new cases of HIV

28.02.2005


Johns Hopkins researchers will present results showing that tighter, dual testing standards work better for accurately distinguishing between new and old cases of HIV. Current testing standards are based on a single test called the serological testing algorithm for recent HIV seroconversion, or STARHS for short. STARHS relies on differentiating newly infected from chronically infected individuals based on the quantity, or levels, of antibodies to HIV present in patients’ blood. Normally, the antibody concentration to HIV increases over time during the first six months of infection. However, effective use of anti-retroviral therapy can depress viral counts in patients to undetectably low levels, which also lower the antibody-to-HIV concentration in the blood. This creates confusion for those responsible for monitoring new infections and spread of HIV. According to the researchers, large numbers of artificially "new" cases also have the potential to hamper measurements of how successful are global treatment efforts in Africa, where aid from the United States is set to make antiretroviral therapy more widely available.



The Hopkins team successfully determined new cases from old by adding the Affinity/Avidity test to the current STARHS protocol, the test widely used by the United States Centers for Disease Control and Prevention. This second test measures the strength of antibody-antigen binding in the immune system’s response to HIV infection. An immature response from a new infection produces weak binding, whereas a mature infection involves strong binding. In a cross-sectional study of more than 1,500 patients showing up in the Hopkins Emergency Department from June to August 2001, the testing of blood samples by STARHS showed 11 cases of new infection, but dual testing with Affinity/Avidity showed only six. Information gathered from interviews with two of the five discrepant patients confirmed that these two were taking antiretroviral therapy, masking their old infection as new.

David March | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>