Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU scientists develop MRI approach to improve breast cancer detection

24.02.2005


Continued studies may result in newer, more effective breast cancer detection methods



Researchers at Oregon Health & Science University’s Advanced Imaging Research Center (AIRC) are developing a new imaging method that may provide a clearer diagnosis of breast cancer. The research is published in the latest issue of the journal Magnetic Resonance in Medicine. AIRC Director Charles Springer, Ph.D., is senior author, and AIRC Manager, Xin Li, Ph.D., is first author of the new paper, along with William Rooney, Ph.D., AIRC faculty. Professor Springer also holds appointments in OHSU’s Cancer Institute and Department of Biomedical Engineering.

"This technique involves a new method for interpreting information gathered through MRI," explained Springer. "The technique involves recognizing that certain properties of MRI signals can change during the examination, much like the changing of a camera’s shutter speed. On a camera, a fast shutter speed can make a speeding car look as if it is standing still. A slower shutter speed may result in a photo showing the car blurring past the camera. This principle, when correctly applied to MRI imaging, can provide more accurate information. In the case of MRI, the blurring is not of the actual image, but of the time courses of the MRI signals."


Magnetic resonance imaging technology combines the use of powerful magnets and radio wave pulses. The magnet influences the magnetization of the body’s water molecules. The radio signals that are received from this can be converted into a visual representation.

The shutter speed concept allows researchers to adjust the mathematics of the computer program analyzing the signals to account for the movement of water molecules in and out of cellular compartments in diseased and healthy tissue. When the MR shutter speed increases, this movement appears to slow. In the case of tumors, using shutter speed analysis not only more clearly indicates the locations of tumors, it also allows researchers to distinguish between malignant tumors and benign tumors.

To conduct this research project, the scientists analyzed data from six patients identified as having breast tumors with mammograms (X-rays.) In procedures conducted by New York research collaborators Drs. Wei Huang, Alina Tudorica, and Thomas Yankeelov of Stony Brook University and Brookhaven National Laboratory, the patients were injected with a contrast agent, which acts like an MRI dye and provides clearer images. The patients received MRI scans as the dye passed through the tumors. The time courses of the MRI signals were analyzed with the shutter speed model. The results showed hot spots only in images of malignant tumors but not in the benign tumors (three of the cases). This complete distinction was not the case using the standard MRI technique, and there was no distinction using mammography. Pathology results on these tumors confirmed the accuracy of the new MRI testing.

"While continued research is required, we believe shutter speed analyzed MRI could become a powerful tool for the diagnosis and treatment of breast cancer and almost any other form of cancer, as well as many other pathologies," explained Springer. "The shutter speed is a very general concept and applies to a great many different MRI techniques."

"We are fortunate to have recruited Dr. Springer and his team to lead the imaging research activities at OHSU and the OHSU Cancer Institute." said Grover C. Bagby Jr., M.D., Director of the OHSU Cancer Institute. "His ’shutter-speed’ model has the potential of changing our approach to cancer screening in general and may also play a role in determining the early effects of treatment. The findings also provide a unique opportunity for cancer researchers to unravel the basic molecular causes of the different image signatures."

Jim Newman | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>