Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU scientists develop MRI approach to improve breast cancer detection

24.02.2005


Continued studies may result in newer, more effective breast cancer detection methods



Researchers at Oregon Health & Science University’s Advanced Imaging Research Center (AIRC) are developing a new imaging method that may provide a clearer diagnosis of breast cancer. The research is published in the latest issue of the journal Magnetic Resonance in Medicine. AIRC Director Charles Springer, Ph.D., is senior author, and AIRC Manager, Xin Li, Ph.D., is first author of the new paper, along with William Rooney, Ph.D., AIRC faculty. Professor Springer also holds appointments in OHSU’s Cancer Institute and Department of Biomedical Engineering.

"This technique involves a new method for interpreting information gathered through MRI," explained Springer. "The technique involves recognizing that certain properties of MRI signals can change during the examination, much like the changing of a camera’s shutter speed. On a camera, a fast shutter speed can make a speeding car look as if it is standing still. A slower shutter speed may result in a photo showing the car blurring past the camera. This principle, when correctly applied to MRI imaging, can provide more accurate information. In the case of MRI, the blurring is not of the actual image, but of the time courses of the MRI signals."


Magnetic resonance imaging technology combines the use of powerful magnets and radio wave pulses. The magnet influences the magnetization of the body’s water molecules. The radio signals that are received from this can be converted into a visual representation.

The shutter speed concept allows researchers to adjust the mathematics of the computer program analyzing the signals to account for the movement of water molecules in and out of cellular compartments in diseased and healthy tissue. When the MR shutter speed increases, this movement appears to slow. In the case of tumors, using shutter speed analysis not only more clearly indicates the locations of tumors, it also allows researchers to distinguish between malignant tumors and benign tumors.

To conduct this research project, the scientists analyzed data from six patients identified as having breast tumors with mammograms (X-rays.) In procedures conducted by New York research collaborators Drs. Wei Huang, Alina Tudorica, and Thomas Yankeelov of Stony Brook University and Brookhaven National Laboratory, the patients were injected with a contrast agent, which acts like an MRI dye and provides clearer images. The patients received MRI scans as the dye passed through the tumors. The time courses of the MRI signals were analyzed with the shutter speed model. The results showed hot spots only in images of malignant tumors but not in the benign tumors (three of the cases). This complete distinction was not the case using the standard MRI technique, and there was no distinction using mammography. Pathology results on these tumors confirmed the accuracy of the new MRI testing.

"While continued research is required, we believe shutter speed analyzed MRI could become a powerful tool for the diagnosis and treatment of breast cancer and almost any other form of cancer, as well as many other pathologies," explained Springer. "The shutter speed is a very general concept and applies to a great many different MRI techniques."

"We are fortunate to have recruited Dr. Springer and his team to lead the imaging research activities at OHSU and the OHSU Cancer Institute." said Grover C. Bagby Jr., M.D., Director of the OHSU Cancer Institute. "His ’shutter-speed’ model has the potential of changing our approach to cancer screening in general and may also play a role in determining the early effects of treatment. The findings also provide a unique opportunity for cancer researchers to unravel the basic molecular causes of the different image signatures."

Jim Newman | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>