Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cartilage repair techniques shown to restore patient mobility and reduce pain

24.02.2005


Two separate new studies presented at a major medical meeting provide objective scientific evidence that the two most commonly performed cartilage repair techniques are effective at restoring patient mobility and reducing pain.



Patients in both studies, those that had a cartilage and bone grafts and those that had a procedure that encouraged new tissue growth, recovered more knee function and experienced less pain after the procedure. Prior to these results, surgeons had no evidence – apart from their own observations and experience – that these commonly practiced surgeries were effective. "The research conducted was a prospective analysis of randomly selected patients who sought treatment to repair cartilage damage. One study looked at patients who had osteochondral allograft, while the other followed-up with patients who had a microfracture procedure," said Riley Williams, MD, a co-author of the study and Director of the Hospital for Special Surgery’s Institute for Cartilage Repair.

Dr. Williams added that the results of both studies will help doctors to more accurately predict outcomes for patients seeking relief from cartilage pain. Dr. Williams presented the research at American Academy of Orthopedic Surgeon’s (AAOS) annual meeting, February 23-26, 2005 in Washington, DC. The results of "The Microfracture Technique for Treatment of Articular Cartilage Lesions in the Knee: A Prospective Cohort Evaluation," were presented on Specialty Day, February 26th. "A Prospective Analysis of Knee Cartilage Defects Treated with Fresh Osteochondral Allografts," was on exhibit in a scientific poster throughout the event.


The microfracture procedure, which is more commonly used in patients with less knee damage, involves drilling small holes in the knee to induce bleeding, clotting, and thus tissue re-growth. Patients in this study were examined at a minimum of two years after their procedure to assess the short and long-term outcomes of their surgery. The research showed that, in the short-term, the procedure was more effective in patients with a lower body mass index. Also, the knees with "good fill," or tissue repair, indicated more positive outcomes. Overall, however, all patients recovered better knee function after the procedure. The second study followed patients who had osteochondral allograft for cartilage repair. Patients who had this procedure generally had significant damage to the knee cartilage. This surgery involves implanting a micrograft of bone and cartilage to repair the lesion. At a mean of thirty-two months after the procedure, patients recovered greater knee function and experienced less pain.

In both studies, results were measured by MRI to detect tissue repair and ADL (Activity of Daily Living) scores to assess knee function. The results of both studies provide scientific data that gives surgeons a tool for the first time that can predict a patient’s outcome from either procedure.

The Institute for Cartilage Repair was developed by a skilled group of clinicians in response to growing clinical need for more durable cartilage and meniscal repair procedures. It comprises a multidisciplinary team of medical professionals who have focused on the problems of detecting and treating cartilage injury, as well as conducting research, since 1999 when it was know as the Cartilage Study Group.

Emily Andariese | EurekAlert!
Further information:
http://www.hss.edu

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>