Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why some lung cancers stop responding to Tarceva and Iressa

22.02.2005


Researchers at Memorial Sloan-Kettering Cancer Center (MSKCC) have found an explanation for why some lung cancers stop responding to the drugs erlotinib (TarcevaTM) and gefitinib (Iressa®). This discovery may lead to the development of new therapies to use when these agents stop working. The research is to be published online in the open-access international journal PLoS Medicine on February 22, 2005.*

Gefitinib and erlotinib are so-called targeted therapies, in that they halt the growth of certain cancers by zeroing in on a signaling molecule critical to the survival of those cancer cells. The two drugs are effective in about 10 percent of US patients with non-small cell lung cancer (NSCLC). Previous work from this group at MSKCC and from groups at Harvard Medical School showed that the two drugs work specifically in patients whose cancers contain mutations in a gene that encodes the epidermal growth factor receptor (EGFR). The MSKCC team has also shown that lung cancer patients with these mutations are often people who have never smoked.

"Although these targeted therapies are initially effective in this subset of patients, the drugs eventually stop working, and the tumors begin to grow again. We call this acquired or secondary resistance," said Vincent A. Miller, MD, a thoracic oncologist at MSKCC and one of the study’s two lead authors. "This is different from primary resistance, which means that the drugs never work at all," Dr. Miller said.



The study involved six patients who had received treatment with gefitinib or erlotinib and who later developed acquired resistance. Researchers studied samples taken from the patients’ tumors at different times before and during treatment. All of the tumors had the kinds of mutations in the EGFR gene that were previously associated with responsiveness to these drugs. But, in three of the six patients, they found that tumors that grew despite continued therapy had an additional mutation in the EGFR gene, strongly implying that the second mutation was the cause of drug resistance. Further biochemical studies showed that this second EGFR mutation, which was the same in all three tumors, could confer resistance to the EGFR mutants normally sensitive to these drugs.

"It is especially interesting that the mutation we found is strictly analogous to a mutation that makes other kinds of tumors resistant to another targeted therapy, imatinib mesylate (Gleevec®)," said Harold Varmus, President of MSKCC and senior author of the study. "Acquired resistance to Gleevec is a well-known problem, and understanding its molecular causes has led to the design of other drugs that overcome that resistance," Dr. Varmus said. Imatinib mesylate is used to treat chronic myelogenous leukemia (CML), a stomach tumor called gastrointestinal stromal tumor (GIST), and other tumors caused by mutations in signaling enzymes like EGFR.

Non-small cell lung cancer makes up about 80 percent of all lung cancers. Mutations in a gene called KRAS (pronounced KAY-rass),which encodes a signaling protein activated by EGFR, are found in 15 to 30 percent of these cancers. The presence of a mutated KRAS gene in a biopsy sample is associated with primary resistance to these drugs, as reported by the same group of MSKCC investigators in the January, 2005, issue of PLoS Medicine. At this time there is no targeted therapy for patients with KRAS mutations.
"Tumor cells from patients in our study who developed secondary resistance to gefitinib and erlotinib after an initial response on therapy did not have mutations in KRAS. Rather, these tumor cells had new mutations in EGFR. This further indicates that secondary resistance is very different from primary resistance," said William Pao, MD, PhD, a molecular biologist and thoracic oncologist and the study’s other lead author. "We are now trying to figure out other possible reasons why gefitinib or erlotinib stop working. We also hope to identify mutations in other potential cancer-causing genes that are critical for lung cancers to survive. Even though many mutated oncogenes have already been found, the crucial genes are still unaccounted for in about 50 percent of non-small cell cancers," Dr. Pao said.

Esther Carver | EurekAlert!
Further information:
http://www.mskcc.org
http://www.plosmedicine.org
http://www.plos.org

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>