Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why some lung cancers stop responding to Tarceva and Iressa

22.02.2005


Researchers at Memorial Sloan-Kettering Cancer Center (MSKCC) have found an explanation for why some lung cancers stop responding to the drugs erlotinib (TarcevaTM) and gefitinib (Iressa®). This discovery may lead to the development of new therapies to use when these agents stop working. The research is to be published online in the open-access international journal PLoS Medicine on February 22, 2005.*

Gefitinib and erlotinib are so-called targeted therapies, in that they halt the growth of certain cancers by zeroing in on a signaling molecule critical to the survival of those cancer cells. The two drugs are effective in about 10 percent of US patients with non-small cell lung cancer (NSCLC). Previous work from this group at MSKCC and from groups at Harvard Medical School showed that the two drugs work specifically in patients whose cancers contain mutations in a gene that encodes the epidermal growth factor receptor (EGFR). The MSKCC team has also shown that lung cancer patients with these mutations are often people who have never smoked.

"Although these targeted therapies are initially effective in this subset of patients, the drugs eventually stop working, and the tumors begin to grow again. We call this acquired or secondary resistance," said Vincent A. Miller, MD, a thoracic oncologist at MSKCC and one of the study’s two lead authors. "This is different from primary resistance, which means that the drugs never work at all," Dr. Miller said.



The study involved six patients who had received treatment with gefitinib or erlotinib and who later developed acquired resistance. Researchers studied samples taken from the patients’ tumors at different times before and during treatment. All of the tumors had the kinds of mutations in the EGFR gene that were previously associated with responsiveness to these drugs. But, in three of the six patients, they found that tumors that grew despite continued therapy had an additional mutation in the EGFR gene, strongly implying that the second mutation was the cause of drug resistance. Further biochemical studies showed that this second EGFR mutation, which was the same in all three tumors, could confer resistance to the EGFR mutants normally sensitive to these drugs.

"It is especially interesting that the mutation we found is strictly analogous to a mutation that makes other kinds of tumors resistant to another targeted therapy, imatinib mesylate (Gleevec®)," said Harold Varmus, President of MSKCC and senior author of the study. "Acquired resistance to Gleevec is a well-known problem, and understanding its molecular causes has led to the design of other drugs that overcome that resistance," Dr. Varmus said. Imatinib mesylate is used to treat chronic myelogenous leukemia (CML), a stomach tumor called gastrointestinal stromal tumor (GIST), and other tumors caused by mutations in signaling enzymes like EGFR.

Non-small cell lung cancer makes up about 80 percent of all lung cancers. Mutations in a gene called KRAS (pronounced KAY-rass),which encodes a signaling protein activated by EGFR, are found in 15 to 30 percent of these cancers. The presence of a mutated KRAS gene in a biopsy sample is associated with primary resistance to these drugs, as reported by the same group of MSKCC investigators in the January, 2005, issue of PLoS Medicine. At this time there is no targeted therapy for patients with KRAS mutations.
"Tumor cells from patients in our study who developed secondary resistance to gefitinib and erlotinib after an initial response on therapy did not have mutations in KRAS. Rather, these tumor cells had new mutations in EGFR. This further indicates that secondary resistance is very different from primary resistance," said William Pao, MD, PhD, a molecular biologist and thoracic oncologist and the study’s other lead author. "We are now trying to figure out other possible reasons why gefitinib or erlotinib stop working. We also hope to identify mutations in other potential cancer-causing genes that are critical for lung cancers to survive. Even though many mutated oncogenes have already been found, the crucial genes are still unaccounted for in about 50 percent of non-small cell cancers," Dr. Pao said.

Esther Carver | EurekAlert!
Further information:
http://www.mskcc.org
http://www.plosmedicine.org
http://www.plos.org

More articles from Health and Medicine:

nachricht A 'half-hearted' solution to one-sided heart failure
24.11.2017 | Boston Children's Hospital

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>