Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Georgia Tech micro-CT imaging technique to help tissue engineers improve bone regeneration

22.02.2005


Technique reveals new method for better bone grafts



Tissue engineers can choose from a wide range of living cells, biomaterials and proteins to repair a bone defect. But finding the optimum combination requires improved methods for tracking the healing process.

New Georgia Tech research points to better ways to heal and regenerate bones using microcomputed tomography (micro-CT) imaging — a process 1 million times more detailed than a traditional CT scan. The new micro-CT scan technique simultaneously looks at both vascularization (the process by which blood vessels invade body tissues during repair) and mineralization (the process by which mineral crystals form to harden regenerating bone) by collecting three-dimensional images in vitro and in vivo.


Georgia Tech researchers used the new technique to help develop bone graft substitutes that combine the availability and structural integrity of bone allografts, or bone grafts taken from a human donor, with the better healing properties of bone autografts, or bone grafts taken from the patient.

Unlike a traditional x-ray that only shows the presence of bone in two dimensions, the new micro-CT technique provides high-resolution 3-D images of vascularization and mineralization during bone repair. This approach allows tissue engineers to optimize the design of implants.

The findings of the project, headed by Dr. Robert Guldberg, a research director at the Georgia Tech/Emory Center for the Engineering of Living Tissues and an associate professor in Georgia Tech’s School of Mechanical Engineering, will be presented Feb. 20 at the annual meeting of the American Association for the Advancement of Science (AAAS).

"We’re applying 3-D imaging techniques to quantify vascularization and mineralization in order to evaluate which of these tissue engineering approaches is going to be able to best and most quickly restore bone function," Guldberg said. "We’ve always known that vascularization is very important to bone repair, but we’ve never really had a good method to measure the process."

Guldberg’s team has used micro-CT imaging to study fracture healing and repair of large bone defects that can result from the removal of bone tumors or crushing injuries. Large bone defects are typically repaired with allografts because large structural pieces are available from human donors.

But allografts are processed to avoid transmitting any diseases from the donor to the patient, leaving the bone sterile but dead. Allografts therefore lack living cells that could help the implants better integrate with existing bone. Consequently, they don’t heal as well as autografts and can re-break in up to 30 percent of patients within a year. Live autograft bone integrates much better, but large amounts of bone are needed to repair a site. They are often too large to remove elsewhere in the patient’s body and cause substantial additional pain.

Georgia Tech’s micro-CT imaging facility has been used to study tissue engineering approaches to enhance or replace the use of bone grafts clinically. Guldberg and his collaborators at the University of Rochester, for example, have explored various strategies to revitalize dead allograft bone. Wrapping allografts with biomaterials containing living marrow cells or delivering bioactive genes has resulted in significantly accelerated repair and integration of allograft implants.

While a traditional bone scan can give a doctor some idea of a bone’s density, a micro-CT scan that provides high resolution 3-D data on vascularization and mineralization can provide much more detailed information about the bone’s structure and blood flow. Although not yet available clinically, these techniques give researchers an unprecedented depth of data on how a bone implant is integrating into the body.

In addition to studying bone regeneration, the ability to look at detailed 3-D images of vascular networks can shed light on research into vascular injuries, disc degeneration in the back and help detect tumors early by pinpointing areas of increased vascularization (which often indicate tumor growth).

Megan McRainey | EurekAlert!
Further information:
http://www.icpa.gatech.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>