Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Georgia Tech micro-CT imaging technique to help tissue engineers improve bone regeneration

22.02.2005


Technique reveals new method for better bone grafts



Tissue engineers can choose from a wide range of living cells, biomaterials and proteins to repair a bone defect. But finding the optimum combination requires improved methods for tracking the healing process.

New Georgia Tech research points to better ways to heal and regenerate bones using microcomputed tomography (micro-CT) imaging — a process 1 million times more detailed than a traditional CT scan. The new micro-CT scan technique simultaneously looks at both vascularization (the process by which blood vessels invade body tissues during repair) and mineralization (the process by which mineral crystals form to harden regenerating bone) by collecting three-dimensional images in vitro and in vivo.


Georgia Tech researchers used the new technique to help develop bone graft substitutes that combine the availability and structural integrity of bone allografts, or bone grafts taken from a human donor, with the better healing properties of bone autografts, or bone grafts taken from the patient.

Unlike a traditional x-ray that only shows the presence of bone in two dimensions, the new micro-CT technique provides high-resolution 3-D images of vascularization and mineralization during bone repair. This approach allows tissue engineers to optimize the design of implants.

The findings of the project, headed by Dr. Robert Guldberg, a research director at the Georgia Tech/Emory Center for the Engineering of Living Tissues and an associate professor in Georgia Tech’s School of Mechanical Engineering, will be presented Feb. 20 at the annual meeting of the American Association for the Advancement of Science (AAAS).

"We’re applying 3-D imaging techniques to quantify vascularization and mineralization in order to evaluate which of these tissue engineering approaches is going to be able to best and most quickly restore bone function," Guldberg said. "We’ve always known that vascularization is very important to bone repair, but we’ve never really had a good method to measure the process."

Guldberg’s team has used micro-CT imaging to study fracture healing and repair of large bone defects that can result from the removal of bone tumors or crushing injuries. Large bone defects are typically repaired with allografts because large structural pieces are available from human donors.

But allografts are processed to avoid transmitting any diseases from the donor to the patient, leaving the bone sterile but dead. Allografts therefore lack living cells that could help the implants better integrate with existing bone. Consequently, they don’t heal as well as autografts and can re-break in up to 30 percent of patients within a year. Live autograft bone integrates much better, but large amounts of bone are needed to repair a site. They are often too large to remove elsewhere in the patient’s body and cause substantial additional pain.

Georgia Tech’s micro-CT imaging facility has been used to study tissue engineering approaches to enhance or replace the use of bone grafts clinically. Guldberg and his collaborators at the University of Rochester, for example, have explored various strategies to revitalize dead allograft bone. Wrapping allografts with biomaterials containing living marrow cells or delivering bioactive genes has resulted in significantly accelerated repair and integration of allograft implants.

While a traditional bone scan can give a doctor some idea of a bone’s density, a micro-CT scan that provides high resolution 3-D data on vascularization and mineralization can provide much more detailed information about the bone’s structure and blood flow. Although not yet available clinically, these techniques give researchers an unprecedented depth of data on how a bone implant is integrating into the body.

In addition to studying bone regeneration, the ability to look at detailed 3-D images of vascular networks can shed light on research into vascular injuries, disc degeneration in the back and help detect tumors early by pinpointing areas of increased vascularization (which often indicate tumor growth).

Megan McRainey | EurekAlert!
Further information:
http://www.icpa.gatech.edu

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>