Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning to fight an adversary that won’t stay down

22.02.2005


New biomolecular technologies have largely failed to deliver the hoped-for knockout punch breakthrough against the defences of disease-causing bacteria, says a leading Canadian specialist in antibiotic resistance.



Techniques such as genomic sequencing and high throughput screening were expected to make the development of new antibiotic compounds easier and more productive. But in most cases the microbes continue to hold the upper hand – and if three billion years of bacterial history is any kind of track record, we’re in for an endless running battle, says Dr. Julian Davies, a microbiologist at the University of British Columbia.

"We haven’t evolved in our thinking sufficiently to be able to match the microbes," says Dr. Davies, Scientific Director of the Canadian Bacterial Diseases Network. "Pharmaceutical companies and other researchers have put hundreds of millions of dollars into ’modern’ approaches to antibiotic discovery over the past six or seven years and this has failed miserably."


The scientist, whose work is supported by Science and Engineering Research Canada (NSERC), has organized a symposium on the evolutionary genetics of antibiotic resistance at the 2005 meeting of the American Association for the Advancement of Science in Washington D.C.

The ongoing appearance of new pathogen varieties like multi-resistant E. coli and Staphylococcus aureus (MRSA), the bacterium that causes methicillin-resistant tuberculosis, provide good examples of the challenges we face, says Dr. Davies.

Ironically, he says, advances in molecular biology techniques have shown just how adept these pathogens are at adapting to anything we can throw at them. Innovations such as highly efficient polymerase chain reaction (PCR) have made it possible to identify and study the many genes responsible for antibiotic resistance in hospitals and the environment.

"What has been found is that there are more antibiotic resistance genes around than we ever realized," says Dr. Davies. "There are more than 300 genes now known that confer resistance to one or more antimicrobials. And they keep coming."

However, the mapping of bacterial genomes has not yet helped yield solutions to the problem, says Dr. Davies.

He adds that our understanding of the activity of microbes must extend beyond the newspaper headlines reporting outbreaks of these "superbugs," so that we can put the role of these organisms in the proper evolutionary perspective. This subject, and antibiotic resistance in particular, has fascinated Davies since he began postdoctoral work on antibiotics and resistance mechanisms at Harvard Medical School in the early 1960s.

"The microbes are evolving genetically, and the pharmaceutical companies are evolving chemically; the two don’t match," says Dr. Davies, adding that doctors who deal with microbial diseases in hospitals must remain cautious about exposing the bacterial pathogens to the newest and most effective drugs so as to avoid overuse and the accompanying onset of resistance.

"There are a relatively small number of antibiotics that have come out that are new, and some of them are very potent and act against most resistant strains," he says. "But the clinicians rightly try to keep these things in reserve for when they are really needed."

Dr. Davies’ AAAS Presentation
Microbial Genetic Jugglery: How Bacteria Became Antibiotic Resistant
Sunday February 20, 2005
10:30 a.m. - 12:00 p.m.

Dr. Julian Davies | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>