Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning to fight an adversary that won’t stay down

22.02.2005


New biomolecular technologies have largely failed to deliver the hoped-for knockout punch breakthrough against the defences of disease-causing bacteria, says a leading Canadian specialist in antibiotic resistance.



Techniques such as genomic sequencing and high throughput screening were expected to make the development of new antibiotic compounds easier and more productive. But in most cases the microbes continue to hold the upper hand – and if three billion years of bacterial history is any kind of track record, we’re in for an endless running battle, says Dr. Julian Davies, a microbiologist at the University of British Columbia.

"We haven’t evolved in our thinking sufficiently to be able to match the microbes," says Dr. Davies, Scientific Director of the Canadian Bacterial Diseases Network. "Pharmaceutical companies and other researchers have put hundreds of millions of dollars into ’modern’ approaches to antibiotic discovery over the past six or seven years and this has failed miserably."


The scientist, whose work is supported by Science and Engineering Research Canada (NSERC), has organized a symposium on the evolutionary genetics of antibiotic resistance at the 2005 meeting of the American Association for the Advancement of Science in Washington D.C.

The ongoing appearance of new pathogen varieties like multi-resistant E. coli and Staphylococcus aureus (MRSA), the bacterium that causes methicillin-resistant tuberculosis, provide good examples of the challenges we face, says Dr. Davies.

Ironically, he says, advances in molecular biology techniques have shown just how adept these pathogens are at adapting to anything we can throw at them. Innovations such as highly efficient polymerase chain reaction (PCR) have made it possible to identify and study the many genes responsible for antibiotic resistance in hospitals and the environment.

"What has been found is that there are more antibiotic resistance genes around than we ever realized," says Dr. Davies. "There are more than 300 genes now known that confer resistance to one or more antimicrobials. And they keep coming."

However, the mapping of bacterial genomes has not yet helped yield solutions to the problem, says Dr. Davies.

He adds that our understanding of the activity of microbes must extend beyond the newspaper headlines reporting outbreaks of these "superbugs," so that we can put the role of these organisms in the proper evolutionary perspective. This subject, and antibiotic resistance in particular, has fascinated Davies since he began postdoctoral work on antibiotics and resistance mechanisms at Harvard Medical School in the early 1960s.

"The microbes are evolving genetically, and the pharmaceutical companies are evolving chemically; the two don’t match," says Dr. Davies, adding that doctors who deal with microbial diseases in hospitals must remain cautious about exposing the bacterial pathogens to the newest and most effective drugs so as to avoid overuse and the accompanying onset of resistance.

"There are a relatively small number of antibiotics that have come out that are new, and some of them are very potent and act against most resistant strains," he says. "But the clinicians rightly try to keep these things in reserve for when they are really needed."

Dr. Davies’ AAAS Presentation
Microbial Genetic Jugglery: How Bacteria Became Antibiotic Resistant
Sunday February 20, 2005
10:30 a.m. - 12:00 p.m.

Dr. Julian Davies | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>