Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lack of specific collagen type leads to osteoarthritis

21.02.2005


Duke University Medical Center researchers have found that joints whose cartilage lacks a specific type of collagen will develop osteoarthritis – the so-called "wear-and-tear" form of the disease – at a greatly accelerated rate.



The results of their experiments with mice provide new insights that could lead to potential treatments for a disease that afflicts more than 40 million Americans, said the researchers.

The researchers found that mice lacking the gene that controls the production of type VI collagen developed osteoarthritis at a rate more than five times greater than mice with a functioning gene. Collagen is a ubiquitous protein found throughout the body in connective tissue, muscle, cartilage and bone. To date, 27 different types have been identified.


To examine structures within the cartilage of mouse joints, Leonidas Alexopoulos, Ph.D., developed a novel "micro-vacuuming" technique. With this device, Alexopoulos extracted key structures within the cartilage of mouse hip joints, which are the size of the ball in a ball-point pen, and analyzed how they responded to the stresses of everyday life.

Alexopoulos presented the results of the Duke study Feb. 20, 2005, at the 51th annual scientific meeting of the Orthopedic Research Society in Washington, D.C. Alexopoulos, now a post-doctoral fellow at the Massachusetts Institute of Technology, conducted the research in the laboratory of Farshid Guilak, Ph.D., director of orthopedic research and senior member of the Duke team. The study was funded by the National Institutes of Health.

The researchers focused their attention on the narrow region of tissue that surrounds the cartilage cells on the surface of joints and is known as the pericellular matrix (PCM). Together with cartilage cells known as chondrocytes, collagen types II, VI and IX, and other proteins, the PCM forms a structure called a chondron, which is believed to provide a "buffer" zone between the cells and the remainder of the cartilage tissue.

"The interesting thing is that type VI collagen occurs nowhere else in the cartilage but the PCM, and no one really understood why," Alexopoulos explained. "When we analyzed the PCM of mice unable to produce type VI collagen, we found that the chondrons in these mice were much softer and the joints did not respond well to mechanical pressures. The joint looked as if it osteoarthritis had developed.

"It appears now that the type VI collagen acts like a scaffold that provides structure and stiffness to the PCM," Alexopoulos continued. "With this model for osteoarthritis, we have a better understanding of how changes in the mechanical forces on the cells may lead to degeneration of the cartilage."

For their experiments, the team compared how chondrons changed over time in three different groups of mice: one group had functioning type VI collagen genes, while the two other groups were strains of "knockout" mice developed by Paolo Bonaldo, University of Padova, Italy. One group of mice had both parents with the type VI collagen gene knocked out, while the other group had only one parent without the gene. After six months, the researchers removed chondrons to determine how they responded.

"We found significant osteoarthritic and developmental differences among the three groups," Alexopoulos said. Specifically, 73 percent of the mice with two knock-out parents showed evidence of mild to severe osteoarthritis. This compared to 40 percent for mice with one knock-out parent and 13 percent for the control mice.

"These findings represent an important advance in our understanding of osteoarthritis," Guilak said. "The study provides direct evidence of the role of type VI collagen in the biomechanical properties of the PCM. While the mechanism behind the accelerated development of osteoarthritis is not yet clear, it suggests that the lack of type VI collagen negatively impacts the ability of the cartilage to respond properly to the mechanical stresses and pressures on the joint."

The experiments would not have been possible without the custom-built "microaspirator," which could extract individual, intact chondrons. Other methods of isolating chondrons, which either involve dissolving surrounding tissues with harsh enzymes or grinding the cartilage in pieces, typically yield damaged chondrons, Alexopoulos said.

"Using a tiny syringe, I was able to go across the surface of the cartilage and vacuum up the chondrons without damaging them," Alexopoulos said. "The chondrons literally popped out of the cartilage and into the syringe. From that point, it was easy to analyze their structure."

It is estimated that more than 70 percent of Americans over the age of 65 show some signs of osteoarthritis, which is characterized by the slow degeneration of the buffering layer of cartilage within joints. The other major form of arthritis, rheumatoid arthritis, occurs when the body’s immune system attacks the linings of joints.

Guilak currently leads of group of clinicians and investigators from Duke and the Durham VA Medical Center who are carrying out a broad range of basic and clinical research into better understanding and treating osteoarthritis.

Richard Merritt | EurekAlert!
Further information:
http://www.mc.duke.edu

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Plant escape from waterlogging

17.10.2017 | Life Sciences

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>