Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain controls robot arm in monkey

18.02.2005


Research represents big step toward development of brain-controlled artificial limbs for people



Reaching for something you want seems a simple enough task, but not for someone with a prosthetic arm, in whom the brain has no control over such fluid, purposeful movements. Yet according to research presented at the 2005 American Association for the Advancement of Science (AAAS) Annual Meeting, scientists have made significant strides to create a permanent artificial device that can restore deliberate mobility to patients with paralyzing injuries. The concept is that, through thought alone, a person could direct a robotic arm – a neural prosthesis – to reach and manipulate a desired object.

As a step toward that goal, University of Pittsburgh researchers report that a monkey outfitted with a child-sized robotic arm controlled directly by its own brain signals is able to feed itself chunks of fruits and vegetables. The researchers trained the monkey to feed itself by using signals from its brain that are passed through tiny electrodes, thinner than a human hair, and fed into a specially designed algorithm that tells the arm how to move. "The beneficiaries of such technology will be patients with spinal cord injuries or nervous system disorders such as amyotrophic lateral sclerosis or ALS," said Andrew Schwartz, Ph.D., professor of neurobiology at the University of Pittsburgh School of Medicine and senior researcher on the project.


The neural prosthesis moves much like a natural arm, with a fully mobile shoulder and elbow and a simple gripper that allows the monkey to grasp and hold food while its own arms are restrained. Computer software interprets signals picked up by tiny probes inserted into neuronal pathways in the motor cortex, a brain region where voluntary movement originates as electrical impulses. The neurons’ collective activity is then fed through the algorithm and sent to the arm, which carries out the actions the monkey intended to perform with its own limb.

The primary motor cortex, a part of the brain that controls movement, has thousands of nerve cells, called neurons, that fire like Geiger counters. These neurons are sensitive to movement in different directions. The direction in which a neuron fires fastest is called its "preferred direction." For each arm movement, no matter how subtle, thousands of motor cortical cells change their firing rate, and collectively, that signal, along with signals from other brain structures, is routed through the spinal cord to the different muscle groups needed to generate the desired movement.

Because of the sheer volume of neurons that fire in concert to allow even the most simple of movements, it would be impossible to create probes that could eavesdrop on them all. The Pitt researchers overcame that obstacle by developing a special algorithm that uses the limited information from relatively few neurons to fill in the missing signals. The algorithm decodes the cortical signals like a voting machine by using each cell’s preferred direction as a label and taking a continuous tally of the population throughout the intended movement.

Monkeys were trained to reach for targets. Then, with electrodes placed in the brain, the algorithm was adjusted to assume the animal was intending to reach for those targets. For the task, food was placed at different locations in front of the monkey, and the animal, with its own arms restrained, used the robotic arm to bring the food to its mouth. "When the monkey wants to move its arm, cells are activated in the motor cortex," said Dr. Schwartz. "Each of those cells activates at a different intensity depending on the direction the monkey intends to move its arm. The direction that produces the greatest intensity is that cell’s preferred direction. The average of the preferred directions of all of the activated cells is called the population vector. We can use the population vector to accurately predict the velocity and direction of normal arm movement, and in the case of this prosthetic, it serves as the control signal to convey the monkey’s intention to the prosthetic arm."

Because the software had to rely on a small number of the thousands of neurons needed to move the arm, the monkey did the rest of the work, learning through biofeedback how to refine the arm’s movements by modifying the firing rates of the recorded neurons.

In recent weeks, Dr. Schwartz and his team were able to improve the algorithms to make it easier for the monkey to learn how to operate the arm. The improvements also will allow them to develop more sophisticated brain devices with smooth, responsive and highly precise movement. They are now working to develop a prosthesis with realistic hand and finger movements. Because of the complexity of a human hand and the movements it needs to make, the researchers expect it to be a major challenge.

Others involved in the research include Meel Velliste, Ph.D., a Pitt post-doctoral fellow in the Schwartz lab, and Chance Spalding, a Pitt bioengineering graduate student; and Anthony Brockwell, Ph.D., Valerie Ventura, Ph.D., Robert Kass, Ph.D., and graduate student Cari Kaufman from the Statistics Department at Carnegie Mellon University.

Lisa Rossi | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Health and Medicine:

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

nachricht A new approach to high insulin levels
18.09.2017 | Schweizerischer Nationalfonds SNF

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

IVAM’s LaserForum visits the Swiss canton of St. Gallen with the topic ultrashort pulse lasers

06.09.2017 | Event News

 
Latest News

Robust and functional – surface finishing by suspension spraying

19.09.2017 | Materials Sciences

The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships

19.09.2017 | Earth Sciences

Digging sensors out of an efficiency hole

19.09.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>