Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain controls robot arm in monkey

18.02.2005


Research represents big step toward development of brain-controlled artificial limbs for people



Reaching for something you want seems a simple enough task, but not for someone with a prosthetic arm, in whom the brain has no control over such fluid, purposeful movements. Yet according to research presented at the 2005 American Association for the Advancement of Science (AAAS) Annual Meeting, scientists have made significant strides to create a permanent artificial device that can restore deliberate mobility to patients with paralyzing injuries. The concept is that, through thought alone, a person could direct a robotic arm – a neural prosthesis – to reach and manipulate a desired object.

As a step toward that goal, University of Pittsburgh researchers report that a monkey outfitted with a child-sized robotic arm controlled directly by its own brain signals is able to feed itself chunks of fruits and vegetables. The researchers trained the monkey to feed itself by using signals from its brain that are passed through tiny electrodes, thinner than a human hair, and fed into a specially designed algorithm that tells the arm how to move. "The beneficiaries of such technology will be patients with spinal cord injuries or nervous system disorders such as amyotrophic lateral sclerosis or ALS," said Andrew Schwartz, Ph.D., professor of neurobiology at the University of Pittsburgh School of Medicine and senior researcher on the project.


The neural prosthesis moves much like a natural arm, with a fully mobile shoulder and elbow and a simple gripper that allows the monkey to grasp and hold food while its own arms are restrained. Computer software interprets signals picked up by tiny probes inserted into neuronal pathways in the motor cortex, a brain region where voluntary movement originates as electrical impulses. The neurons’ collective activity is then fed through the algorithm and sent to the arm, which carries out the actions the monkey intended to perform with its own limb.

The primary motor cortex, a part of the brain that controls movement, has thousands of nerve cells, called neurons, that fire like Geiger counters. These neurons are sensitive to movement in different directions. The direction in which a neuron fires fastest is called its "preferred direction." For each arm movement, no matter how subtle, thousands of motor cortical cells change their firing rate, and collectively, that signal, along with signals from other brain structures, is routed through the spinal cord to the different muscle groups needed to generate the desired movement.

Because of the sheer volume of neurons that fire in concert to allow even the most simple of movements, it would be impossible to create probes that could eavesdrop on them all. The Pitt researchers overcame that obstacle by developing a special algorithm that uses the limited information from relatively few neurons to fill in the missing signals. The algorithm decodes the cortical signals like a voting machine by using each cell’s preferred direction as a label and taking a continuous tally of the population throughout the intended movement.

Monkeys were trained to reach for targets. Then, with electrodes placed in the brain, the algorithm was adjusted to assume the animal was intending to reach for those targets. For the task, food was placed at different locations in front of the monkey, and the animal, with its own arms restrained, used the robotic arm to bring the food to its mouth. "When the monkey wants to move its arm, cells are activated in the motor cortex," said Dr. Schwartz. "Each of those cells activates at a different intensity depending on the direction the monkey intends to move its arm. The direction that produces the greatest intensity is that cell’s preferred direction. The average of the preferred directions of all of the activated cells is called the population vector. We can use the population vector to accurately predict the velocity and direction of normal arm movement, and in the case of this prosthetic, it serves as the control signal to convey the monkey’s intention to the prosthetic arm."

Because the software had to rely on a small number of the thousands of neurons needed to move the arm, the monkey did the rest of the work, learning through biofeedback how to refine the arm’s movements by modifying the firing rates of the recorded neurons.

In recent weeks, Dr. Schwartz and his team were able to improve the algorithms to make it easier for the monkey to learn how to operate the arm. The improvements also will allow them to develop more sophisticated brain devices with smooth, responsive and highly precise movement. They are now working to develop a prosthesis with realistic hand and finger movements. Because of the complexity of a human hand and the movements it needs to make, the researchers expect it to be a major challenge.

Others involved in the research include Meel Velliste, Ph.D., a Pitt post-doctoral fellow in the Schwartz lab, and Chance Spalding, a Pitt bioengineering graduate student; and Anthony Brockwell, Ph.D., Valerie Ventura, Ph.D., Robert Kass, Ph.D., and graduate student Cari Kaufman from the Statistics Department at Carnegie Mellon University.

Lisa Rossi | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>