Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain controls robot arm in monkey

18.02.2005


Research represents big step toward development of brain-controlled artificial limbs for people



Reaching for something you want seems a simple enough task, but not for someone with a prosthetic arm, in whom the brain has no control over such fluid, purposeful movements. Yet according to research presented at the 2005 American Association for the Advancement of Science (AAAS) Annual Meeting, scientists have made significant strides to create a permanent artificial device that can restore deliberate mobility to patients with paralyzing injuries. The concept is that, through thought alone, a person could direct a robotic arm – a neural prosthesis – to reach and manipulate a desired object.

As a step toward that goal, University of Pittsburgh researchers report that a monkey outfitted with a child-sized robotic arm controlled directly by its own brain signals is able to feed itself chunks of fruits and vegetables. The researchers trained the monkey to feed itself by using signals from its brain that are passed through tiny electrodes, thinner than a human hair, and fed into a specially designed algorithm that tells the arm how to move. "The beneficiaries of such technology will be patients with spinal cord injuries or nervous system disorders such as amyotrophic lateral sclerosis or ALS," said Andrew Schwartz, Ph.D., professor of neurobiology at the University of Pittsburgh School of Medicine and senior researcher on the project.


The neural prosthesis moves much like a natural arm, with a fully mobile shoulder and elbow and a simple gripper that allows the monkey to grasp and hold food while its own arms are restrained. Computer software interprets signals picked up by tiny probes inserted into neuronal pathways in the motor cortex, a brain region where voluntary movement originates as electrical impulses. The neurons’ collective activity is then fed through the algorithm and sent to the arm, which carries out the actions the monkey intended to perform with its own limb.

The primary motor cortex, a part of the brain that controls movement, has thousands of nerve cells, called neurons, that fire like Geiger counters. These neurons are sensitive to movement in different directions. The direction in which a neuron fires fastest is called its "preferred direction." For each arm movement, no matter how subtle, thousands of motor cortical cells change their firing rate, and collectively, that signal, along with signals from other brain structures, is routed through the spinal cord to the different muscle groups needed to generate the desired movement.

Because of the sheer volume of neurons that fire in concert to allow even the most simple of movements, it would be impossible to create probes that could eavesdrop on them all. The Pitt researchers overcame that obstacle by developing a special algorithm that uses the limited information from relatively few neurons to fill in the missing signals. The algorithm decodes the cortical signals like a voting machine by using each cell’s preferred direction as a label and taking a continuous tally of the population throughout the intended movement.

Monkeys were trained to reach for targets. Then, with electrodes placed in the brain, the algorithm was adjusted to assume the animal was intending to reach for those targets. For the task, food was placed at different locations in front of the monkey, and the animal, with its own arms restrained, used the robotic arm to bring the food to its mouth. "When the monkey wants to move its arm, cells are activated in the motor cortex," said Dr. Schwartz. "Each of those cells activates at a different intensity depending on the direction the monkey intends to move its arm. The direction that produces the greatest intensity is that cell’s preferred direction. The average of the preferred directions of all of the activated cells is called the population vector. We can use the population vector to accurately predict the velocity and direction of normal arm movement, and in the case of this prosthetic, it serves as the control signal to convey the monkey’s intention to the prosthetic arm."

Because the software had to rely on a small number of the thousands of neurons needed to move the arm, the monkey did the rest of the work, learning through biofeedback how to refine the arm’s movements by modifying the firing rates of the recorded neurons.

In recent weeks, Dr. Schwartz and his team were able to improve the algorithms to make it easier for the monkey to learn how to operate the arm. The improvements also will allow them to develop more sophisticated brain devices with smooth, responsive and highly precise movement. They are now working to develop a prosthesis with realistic hand and finger movements. Because of the complexity of a human hand and the movements it needs to make, the researchers expect it to be a major challenge.

Others involved in the research include Meel Velliste, Ph.D., a Pitt post-doctoral fellow in the Schwartz lab, and Chance Spalding, a Pitt bioengineering graduate student; and Anthony Brockwell, Ph.D., Valerie Ventura, Ph.D., Robert Kass, Ph.D., and graduate student Cari Kaufman from the Statistics Department at Carnegie Mellon University.

Lisa Rossi | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>