Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Young blood revives aging muscles

17.02.2005


Any older person can attest that aging muscles don’t heal like young ones. But it turns out that’s not the muscle’s fault. A study in the Feb. 17 issue of Nature shows that it’s old blood that keeps the muscles down.



The study, led by Thomas Rando, MD, PhD, associate professor of neurology and neurological sciences at the Stanford University School of Medicine, built on previous work showing that old muscles have the capacity to repair themselves but fail to do so. Rando and his group studied specialized cells called satellite cells, the muscle stem cells, that dot muscle tissue. These normally lie dormant but come to the rescue in response to damaged muscle-at least they do in young mice and humans.

In older mice the satellite cells hold the same position, but are deaf to the muscle’s cry for help. In the Nature study, Rando and his group first attached old mice to their younger lab-mates in a way that caused the two mice to share a blood supply. They then induced muscle damage only in the older mice. Bathed in the presence of younger blood, the old muscles healed normally. In contrast, when old mice were connected to other old mice they healed slowly.


In similar work, the group examined the livers of older mice connected to younger lab-mates. The cells that help liver tissue regenerate are less active in older animals, but again the cells responded more robustly when the livers in older mice were bathed in the younger blood. Clearly, something in the youthful blood revived the regenerative cells in muscle and liver.

"We need to consider the possibility that the niche in which stem cells sit is as important in terms of stem cell aging as the cells themselves," said Rando, who is also an investigator at the Veterans Affairs Palo Alto Health Care System. It could be the chemical soup surrounding the cells, not the cells themselves, that’s at fault in aging.

One clue to what might be going on also comes from previous work. Rando had found that satellite cells in younger muscles begin producing a protein dubbed Delta in response to muscle damage. Older muscles maintained the same pre-injury levels of Delta even after muscle damage. However, in the current study he found that satellite cells in elderly mice joined to younger partners ramped up Delta production to youthful levels after an injury.

The group confirmed their results by putting satellite cells from old and young mice in a lab dish with either old or young blood serum. Old satellite cells in old serum and young satellite cells in young serum both behaved as expected. But when old satellite cells were bathed in young serum they cranked up their production of Delta and began dividing. Likewise, young satellite cells decreased the amount of Delta they produced when in a dish with older serum and divided less frequently.

Rando said that it may be a general phenomenon that a person’s inability to repair tissues with age-whether it’s muscle, liver, skin or brain-is a matter of the regenerative cell’s environment rather than the cells themselves.

Rando said that finding the youth-promoting factors in the blood is no small task. "It’s as big a fishing expedition as you can possibly imagine," he said. With thousands of proteins, lipids, sugars and other small molecules in the blood serum, deciding where to look first would be tantamount to a roll of the dice. What’s more, there’s no evidence that the same blood component is responsible for reviving the different types of cells.

"Another approach is to pick factors that are good candidates and see if any of them or some combination recapitulate the effect of the younger blood," Rando said. His group is now looking for likely targets. He said that for some degenerative diseases such as Alzheimer’s or muscular dystrophy, such blood-borne factors may be able to reactivate the regenerative cell’s ability to repair tissue that has been damaged.

Amy Adams | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>