Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Faster, less expensive test proven more effective in detecting bladder cancer


Researchers hope test increases early detection

Physicians now have a more dependable, less expensive tool to help detect bladder cancer earlier. Researchers at The University of Texas M. D. Anderson Cancer Center found that a simple test that can be administered and read in the doctor’s office was three times more effective than a conventional laboratory test for detecting bladder cancer.

In a study published in the February 16 issue of the Journal of the American Medical Association, researchers tested the NMP22 tumor marker assay in 1,331 patients at high risk for bladder cancer. Researchers determined through cystoscopy that 79 of the 1,331 patients examined had bladder cancer. The NMP22 assay was positive in 55 percent of the cases (44 out of 79 cases) while the conventional cytology test detected about 16 percent of malignancies (12 out of 76 cases).

This demonstrated that the NMP22 test was significantly more sensitive than cytology, or the conventional laboratory test, says H. Barton Grossman, M.D., professor in M. D. Anderson’s Department of Urology and the study’s lead author. "Our challenge is to improve the detection of bladder cancer," says Grossman. "This test is easy and may save lives."

He cautions, however, that NMP22 should not be used alone to detect bladder cancer, but should be combined with bladder examination (cystoscopy) to provide an accurate diagnosis. "No single procedure is 100 percent sensitive, so a combination of procedures is recommended," Grossman says.

The findings are seen as an advance in screening for bladder cancer, Grossman says, which is the fifth most common cancer in the United States. Five-year survival is 95 percent for cancer caught early, but it is much lower for the 25 percent of bladder tumors that are advanced when first diagnosed. It is estimated that more than 60,000 people living in the U.S. will be diagnosed with bladder cancer this year; 13,000 are predicted to die of the disease.

Grossman led a team of researchers at M. D. Anderson and 23 academic, private practice, and veterans’ facilities in 10 states who enrolled patients into the clinical trial that examined the effectiveness of these different diagnostic tests.

Patients enrolled in the trial were suspected of having bladder cancer because they had evidence of blood in their urine and met some of the risk factors associated with the disease, which include a history of smoking, exposure to certain chemicals, being over age 40 and painful and frequent urination. Tobacco use is the most common risk factor, accounting for about 50 percent of bladder cancer, Grossman says.

To conduct the study, a sample of urine collected from the patients was divided in half, and one part was used for the NMP22 test. The rest was used for a cytology test, which is the screening method physicians traditionally use. The cytology test looks for abnormal cells in the urine and must be sent to outside laboratories for evaluation. Patients may wait as long as a week to receive these results, according to Grossman, while the results of the NMP22 test can be read within 30 to 50 minutes in the doctor’s office.

The patients also received a cystoscopy, which uses a flexible endoscope to examine the bladder. This low-risk procedure can be performed under local anesthesia in a doctor’s office and is considered the "gold standard" of diagnostic tests, but can fail to detect some bladder cancers, says Grossman.

In this study, the researchers looked at the sensitivity as well as the specificity of cytology versus the NMP22 test. Sensitivity refers to how frequently the test picked up the existence of cancer; specificity refers to whether the test detected cancer that truly existed, and not false positives.

Although NMP22 was more sensitive in this study, cytology was more specific (99 percent versus 86 percent), meaning that the number of false positives was higher for the NMP22 test. Still, the authors say "the high specificity of cytology is offset by low sensitivity, ambiguous test results, expense, and time lag to obtain reports."

Stephanie Dedeaux | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>