Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Right before Your Eyes: Visual Recognition Begins with Categorization

14.02.2005


Take a moment and look at a picture near you. What did you see? How long did it take you to understand what was in the image, meaning how long did it take you to realize the green blob was a tree? Or that the orange circle was a piece of fruit? Most likely you assume that it took you no time at all, you just knew.



Psychologists who study how we perceive images used to think that, before the process of object recognition and categorization could begin, the brain must first separate the figure in the image—such as a tree, or a piece of fruit—from its background. However, new research shows we actually categorize objects before we identify them. It means that, by the time your brain even realizes you are looking at something, you already know what that thing is.

The new research was conducted by Kalanit Grill-Spector of Stanford University and Nancy Kanwisher of the Massachusetts Institute of Technology. Their article, "Visual Recognition: As Soon as You Know It’s There, You Know What It Is," will appear in the February 2005 issue of Psychological Science, a journal of the American Psychological Society.


In their research, Grill-Spector and Kanwisher tested three types of visual recognition by quickly flashing images before the eyes of research participants. The first type, object detection, was tested by showing images that may or may not have contained figures. Participants had to quickly judge whether or not there was a figure present against the background. The second grouping tested categorization, where participants were shown images of figures and had to state what type of figure they saw, such as bird, car, or food. In the last section of the test, more specific images were shown in order to test identification. Participants had to identify the figures within categories such as parrot or pigeon, versus just the category of "bird." It turned out the participants were as fast and accurate in saying what category an object belonged to as they were at saying whether or not they had seen an object at all. The ability for the subjects to process the images in such a short time proved that by the time they knew an image contained some sort of object, they already knew its general category.

"There are two main processing stages in object recognition: categorization and identification, with identification following categorization," the authors wrote. "Overall, these findings provide important constraints for theories of object recognition."

This built-in human process of rapid categorization before identification restricts the brain’s search for a match between the visual input (the picture you looked at) and an internal representation to category-relevant representations (stored images of other objects you have seen and identified prior to today).

"Future research building on these psychophysical techniques and multimodal imaging techniques will enhance our knowledge about the processes and representations that enable rapid and efficient visual perception," Grill-Spector said. "Rapid categorization obviously facilitates our survival and interaction with the environment on an everyday level."

For more information, contact Grill-Spector at kalanit@psych.stanford.edu. A full copy of the article is available at the APS Media Center at www.psychologicalscience.org/media.

Psychological Science is ranked among the top 10 general psychology journals for impact by the Institute for Scientific Information. The American Psychological Society represents psychologists advocating science-based research in the public’s interest.

Kalanit Grill-Spector | EurekAlert!
Further information:
http://www.psychologicalscience.org/media

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>