Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Right before Your Eyes: Visual Recognition Begins with Categorization

14.02.2005


Take a moment and look at a picture near you. What did you see? How long did it take you to understand what was in the image, meaning how long did it take you to realize the green blob was a tree? Or that the orange circle was a piece of fruit? Most likely you assume that it took you no time at all, you just knew.



Psychologists who study how we perceive images used to think that, before the process of object recognition and categorization could begin, the brain must first separate the figure in the image—such as a tree, or a piece of fruit—from its background. However, new research shows we actually categorize objects before we identify them. It means that, by the time your brain even realizes you are looking at something, you already know what that thing is.

The new research was conducted by Kalanit Grill-Spector of Stanford University and Nancy Kanwisher of the Massachusetts Institute of Technology. Their article, "Visual Recognition: As Soon as You Know It’s There, You Know What It Is," will appear in the February 2005 issue of Psychological Science, a journal of the American Psychological Society.


In their research, Grill-Spector and Kanwisher tested three types of visual recognition by quickly flashing images before the eyes of research participants. The first type, object detection, was tested by showing images that may or may not have contained figures. Participants had to quickly judge whether or not there was a figure present against the background. The second grouping tested categorization, where participants were shown images of figures and had to state what type of figure they saw, such as bird, car, or food. In the last section of the test, more specific images were shown in order to test identification. Participants had to identify the figures within categories such as parrot or pigeon, versus just the category of "bird." It turned out the participants were as fast and accurate in saying what category an object belonged to as they were at saying whether or not they had seen an object at all. The ability for the subjects to process the images in such a short time proved that by the time they knew an image contained some sort of object, they already knew its general category.

"There are two main processing stages in object recognition: categorization and identification, with identification following categorization," the authors wrote. "Overall, these findings provide important constraints for theories of object recognition."

This built-in human process of rapid categorization before identification restricts the brain’s search for a match between the visual input (the picture you looked at) and an internal representation to category-relevant representations (stored images of other objects you have seen and identified prior to today).

"Future research building on these psychophysical techniques and multimodal imaging techniques will enhance our knowledge about the processes and representations that enable rapid and efficient visual perception," Grill-Spector said. "Rapid categorization obviously facilitates our survival and interaction with the environment on an everyday level."

For more information, contact Grill-Spector at kalanit@psych.stanford.edu. A full copy of the article is available at the APS Media Center at www.psychologicalscience.org/media.

Psychological Science is ranked among the top 10 general psychology journals for impact by the Institute for Scientific Information. The American Psychological Society represents psychologists advocating science-based research in the public’s interest.

Kalanit Grill-Spector | EurekAlert!
Further information:
http://www.psychologicalscience.org/media

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>