Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel "Canary on a Chip" Sensor Measures Tiny Changes in Cell Volume; Provides Assay Results in Minutes

14.02.2005


A novel technology that can test cells in minutes for responses to any stimulus, including antibiotics, pathogens, toxins, radiation or chemotherapy, has been developed by scientists at the University at Buffalo.

The paper describing the sensor will appear in the Feb. 15 issue of Analytical Chemistry, and currently is available as an "ASAP" article on the American Chemical Society Web site http://www.chemistry.org.

Susan Z. Hua, Ph.D., UB assistant professor of mechanical and aerospace engineering and physiology and biophysics, is the lead researcher. The technology is based on the universal connection between cell volume and the cell environment, or cell volume cytometry. It is particularly useful because it eliminates the need to culture bacteria to assess their sensitivity to antibiotics. "Now, in a matter of minutes, we can tell if particular antibiotics are active against specific bacteria," said Frederick Sachs, Ph.D., professor of physiology and biophysics at UB, co-director of UB’s Center for Single Molecule Biophysics and a coauthor on the paper. "We have measured the sensitivity to antibiotics of different strains of E. Coli in less than 10 minutes at room temperature. We will get results even faster at higher temperatures."



Hua and her students created the tiny silicon chip that is the heart of the sensor chamber in which the cells are encased for testing. "The new technique is so sensitive it can detect changes in cell dimensions never seen before in living cells," she said. "The necessary power can be supplied even by a watch battery and the sensor is so small it could fit into a pencil eraser." Sachs said the assay can be used on any biological component that is enclosed by a membrane. "It doesn’t have to be cells. We can use lipid bilayer vesicles containing a single protein, mitochondria, chloroplasts (plant cells) or cell nuclei, as well as whole cells. We can screen for just about anything."

For example, this technique could be used to rapidly scan cancer cells obtained from biopsies to evaluate the effectiveness of chemotherapy or radiation protocols. The chip has obvious application to measuring toxins relevant to bioterrorism, Sachs said.

Cell volume and physiological function are intimately intertwined, the authors note in their paper. Normal biological activity, such as metabolism, apoptosis (programmed cell death) or cell division affect cell volume, as does abnormal activity, such as exposure to toxic agents. Sachs and Hua call the sensor a "canary on a chip," to highlight its versatility as a first-line indicator of activity.

There are many methods used to measure changes in cell volume, said Hua, but electrical impedance, the resistance to flow of electric current, is the key to this sensor’s simplicity. Cells are electrical insulators, she noted. "When immersed in salt water, which conducts current, the cells displace some of the water and reduce the electrical current. If cells swell, as commonly would happen in the presence of a toxin, the resistance would increase and the current would become smaller, indicating a cellular response."

In addition to being simple to use, the chip is inexpensive, low power, portable and provides real-time results, said Sachs. "The assay is applicable to an enormous number of problems, and is a particularly powerful tool for drug screening," he noted.

Additional authors on the study are Daniel A. Ateya, a UB mechanical engineering student; Philip A. Gottlieb, Ph.D., research associate professor in the UB Center for Molecular Biology and Immunology, and Steve Besch, Ph.D., research assistant professor of physiology and biophysics. The authors have filed a patent on the technology.

The work was supported by grants to Hua and Sachs from the National Science Foundation and the National Institutes of Health, respectively. The microfabrication was done primarily in the Nanofabrication Facility at Cornell University.

Lois Baker | EurekAlert!
Further information:
http://www.buffalo.edu
http://www.chemistry.org

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>