Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel "Canary on a Chip" Sensor Measures Tiny Changes in Cell Volume; Provides Assay Results in Minutes

14.02.2005


A novel technology that can test cells in minutes for responses to any stimulus, including antibiotics, pathogens, toxins, radiation or chemotherapy, has been developed by scientists at the University at Buffalo.

The paper describing the sensor will appear in the Feb. 15 issue of Analytical Chemistry, and currently is available as an "ASAP" article on the American Chemical Society Web site http://www.chemistry.org.

Susan Z. Hua, Ph.D., UB assistant professor of mechanical and aerospace engineering and physiology and biophysics, is the lead researcher. The technology is based on the universal connection between cell volume and the cell environment, or cell volume cytometry. It is particularly useful because it eliminates the need to culture bacteria to assess their sensitivity to antibiotics. "Now, in a matter of minutes, we can tell if particular antibiotics are active against specific bacteria," said Frederick Sachs, Ph.D., professor of physiology and biophysics at UB, co-director of UB’s Center for Single Molecule Biophysics and a coauthor on the paper. "We have measured the sensitivity to antibiotics of different strains of E. Coli in less than 10 minutes at room temperature. We will get results even faster at higher temperatures."



Hua and her students created the tiny silicon chip that is the heart of the sensor chamber in which the cells are encased for testing. "The new technique is so sensitive it can detect changes in cell dimensions never seen before in living cells," she said. "The necessary power can be supplied even by a watch battery and the sensor is so small it could fit into a pencil eraser." Sachs said the assay can be used on any biological component that is enclosed by a membrane. "It doesn’t have to be cells. We can use lipid bilayer vesicles containing a single protein, mitochondria, chloroplasts (plant cells) or cell nuclei, as well as whole cells. We can screen for just about anything."

For example, this technique could be used to rapidly scan cancer cells obtained from biopsies to evaluate the effectiveness of chemotherapy or radiation protocols. The chip has obvious application to measuring toxins relevant to bioterrorism, Sachs said.

Cell volume and physiological function are intimately intertwined, the authors note in their paper. Normal biological activity, such as metabolism, apoptosis (programmed cell death) or cell division affect cell volume, as does abnormal activity, such as exposure to toxic agents. Sachs and Hua call the sensor a "canary on a chip," to highlight its versatility as a first-line indicator of activity.

There are many methods used to measure changes in cell volume, said Hua, but electrical impedance, the resistance to flow of electric current, is the key to this sensor’s simplicity. Cells are electrical insulators, she noted. "When immersed in salt water, which conducts current, the cells displace some of the water and reduce the electrical current. If cells swell, as commonly would happen in the presence of a toxin, the resistance would increase and the current would become smaller, indicating a cellular response."

In addition to being simple to use, the chip is inexpensive, low power, portable and provides real-time results, said Sachs. "The assay is applicable to an enormous number of problems, and is a particularly powerful tool for drug screening," he noted.

Additional authors on the study are Daniel A. Ateya, a UB mechanical engineering student; Philip A. Gottlieb, Ph.D., research associate professor in the UB Center for Molecular Biology and Immunology, and Steve Besch, Ph.D., research assistant professor of physiology and biophysics. The authors have filed a patent on the technology.

The work was supported by grants to Hua and Sachs from the National Science Foundation and the National Institutes of Health, respectively. The microfabrication was done primarily in the Nanofabrication Facility at Cornell University.

Lois Baker | EurekAlert!
Further information:
http://www.buffalo.edu
http://www.chemistry.org

More articles from Health and Medicine:

nachricht A 'half-hearted' solution to one-sided heart failure
24.11.2017 | Boston Children's Hospital

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>