Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Novel "Canary on a Chip" Sensor Measures Tiny Changes in Cell Volume; Provides Assay Results in Minutes


A novel technology that can test cells in minutes for responses to any stimulus, including antibiotics, pathogens, toxins, radiation or chemotherapy, has been developed by scientists at the University at Buffalo.

The paper describing the sensor will appear in the Feb. 15 issue of Analytical Chemistry, and currently is available as an "ASAP" article on the American Chemical Society Web site

Susan Z. Hua, Ph.D., UB assistant professor of mechanical and aerospace engineering and physiology and biophysics, is the lead researcher. The technology is based on the universal connection between cell volume and the cell environment, or cell volume cytometry. It is particularly useful because it eliminates the need to culture bacteria to assess their sensitivity to antibiotics. "Now, in a matter of minutes, we can tell if particular antibiotics are active against specific bacteria," said Frederick Sachs, Ph.D., professor of physiology and biophysics at UB, co-director of UB’s Center for Single Molecule Biophysics and a coauthor on the paper. "We have measured the sensitivity to antibiotics of different strains of E. Coli in less than 10 minutes at room temperature. We will get results even faster at higher temperatures."

Hua and her students created the tiny silicon chip that is the heart of the sensor chamber in which the cells are encased for testing. "The new technique is so sensitive it can detect changes in cell dimensions never seen before in living cells," she said. "The necessary power can be supplied even by a watch battery and the sensor is so small it could fit into a pencil eraser." Sachs said the assay can be used on any biological component that is enclosed by a membrane. "It doesn’t have to be cells. We can use lipid bilayer vesicles containing a single protein, mitochondria, chloroplasts (plant cells) or cell nuclei, as well as whole cells. We can screen for just about anything."

For example, this technique could be used to rapidly scan cancer cells obtained from biopsies to evaluate the effectiveness of chemotherapy or radiation protocols. The chip has obvious application to measuring toxins relevant to bioterrorism, Sachs said.

Cell volume and physiological function are intimately intertwined, the authors note in their paper. Normal biological activity, such as metabolism, apoptosis (programmed cell death) or cell division affect cell volume, as does abnormal activity, such as exposure to toxic agents. Sachs and Hua call the sensor a "canary on a chip," to highlight its versatility as a first-line indicator of activity.

There are many methods used to measure changes in cell volume, said Hua, but electrical impedance, the resistance to flow of electric current, is the key to this sensor’s simplicity. Cells are electrical insulators, she noted. "When immersed in salt water, which conducts current, the cells displace some of the water and reduce the electrical current. If cells swell, as commonly would happen in the presence of a toxin, the resistance would increase and the current would become smaller, indicating a cellular response."

In addition to being simple to use, the chip is inexpensive, low power, portable and provides real-time results, said Sachs. "The assay is applicable to an enormous number of problems, and is a particularly powerful tool for drug screening," he noted.

Additional authors on the study are Daniel A. Ateya, a UB mechanical engineering student; Philip A. Gottlieb, Ph.D., research associate professor in the UB Center for Molecular Biology and Immunology, and Steve Besch, Ph.D., research assistant professor of physiology and biophysics. The authors have filed a patent on the technology.

The work was supported by grants to Hua and Sachs from the National Science Foundation and the National Institutes of Health, respectively. The microfabrication was done primarily in the Nanofabrication Facility at Cornell University.

Lois Baker | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>