Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mailman School of Public Health researchers develop infectious disease diagnostic tool

07.02.2005


New technology can screen for multiple agents simultaneously; has potential applications for clinical medicine, biodefense, vaccine development, blood product industry



Researchers at Columbia University’s Mailman School of Public Health and the Columbia Genome Center have designed and developed a sensitive new diagnostic technology platform, called "Mass Tag PCR," that can simultaneously screen for multiple infectious agents. The new technology is addressed in a paper published in the February issue of the Centers for Disease Control and Prevention’s (CDC) Emerging Infectious Diseases. This new platform is demonstrated in an assay that detects and discriminates 22 pathogens including viruses and bacteria that can present as clinically similar pulmonary disease.

This new technology platform addresses important challenges for infectious disease identification-sensitivity and breadth. Mass Tag PCR provides the ability to be precise in identification, as well as the ability to apply current diagnostics to more than one pathogen at a time, thereby reducing the time needed for differential diagnosis.


"We focused first on respiratory diseases because differential diagnosis is a common clinical problem with implications for outbreak control and individual case management," stated W. Ian Lipkin, MD, Jerome L. and Dawn Greene Professor of Epidemiology and professor of Neurology and Pathology at Columbia University, and senior author of the paper. "However, we envision implementing this method for a wide variety of applications such as blood product surveillance, agriculture, forensic microbiology, and biodefense."

To address the need for highly sensitive diagnostics, researchers built on an established method known as polymerase chain reaction that allows amplification of genetic sequences and on a technology previously used for DNA sequencing and detection of genetic polymorphisms. Genetic probes for pathogens were coupled to markers known as mass codes. After amplification, incorporated mass codes were detected by mass spectroscopy allowing identification of the pathogen.

According to Thomas Briese, PhD, associate director of the Greene Infectious Disease Laboratory at the Mailman School, "This new platform can easily detect multiple pathogens in a couple of hours with minimal labor, and will allow comprehensive detection of co-infections."

"The high multiplexing capability and sensitivity of the approach is provided by using the digital molecular weights of small molecules to code for the identity of the pathogens and detection of the molecular tags with high sensitive mass spectrometry, which can be potentially miniaturized," stated coauthor, Jingyue Ju, PhD, Head of DNA Sequencing and Chemical Biology at the Columbia Genome Center.

The project, headquartered at the Mailman School’s Jerome L. and Dawn Greene Infectious Disease Laboratory, is a global effort, with partners from around the world providing input into assay design, clinical samples for validation, as well as opportunities to advance the science to the next, practical stages-including outbreak investigation, and blood product screening. Key partners in the work presented in the current publication include the Centro Nacional de Microbiologia of Spain, the Wadsworth Laboratory of the New York State Department of Health, Qiagen Inc, and Operon Inc. Application of the technology is already being evaluated through collaborative relationships with the National Institute for Communicable Diseases, South Africa, the University of Hong Kong, SAR, the Robert Koch-Institute, Germany, and the Bernhard-Nocht-Institute for Tropical Medicine, Germany.

Funding for the project was received from the National Institutes of Health / National Institute of Allergy and Infectious Disease, the Northeast Biodefense Center, and the Ellison Medical Foundation.

Stephanie Berger | EurekAlert!
Further information:
http://www.columbia.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>