Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mailman School of Public Health researchers develop infectious disease diagnostic tool

07.02.2005


New technology can screen for multiple agents simultaneously; has potential applications for clinical medicine, biodefense, vaccine development, blood product industry



Researchers at Columbia University’s Mailman School of Public Health and the Columbia Genome Center have designed and developed a sensitive new diagnostic technology platform, called "Mass Tag PCR," that can simultaneously screen for multiple infectious agents. The new technology is addressed in a paper published in the February issue of the Centers for Disease Control and Prevention’s (CDC) Emerging Infectious Diseases. This new platform is demonstrated in an assay that detects and discriminates 22 pathogens including viruses and bacteria that can present as clinically similar pulmonary disease.

This new technology platform addresses important challenges for infectious disease identification-sensitivity and breadth. Mass Tag PCR provides the ability to be precise in identification, as well as the ability to apply current diagnostics to more than one pathogen at a time, thereby reducing the time needed for differential diagnosis.


"We focused first on respiratory diseases because differential diagnosis is a common clinical problem with implications for outbreak control and individual case management," stated W. Ian Lipkin, MD, Jerome L. and Dawn Greene Professor of Epidemiology and professor of Neurology and Pathology at Columbia University, and senior author of the paper. "However, we envision implementing this method for a wide variety of applications such as blood product surveillance, agriculture, forensic microbiology, and biodefense."

To address the need for highly sensitive diagnostics, researchers built on an established method known as polymerase chain reaction that allows amplification of genetic sequences and on a technology previously used for DNA sequencing and detection of genetic polymorphisms. Genetic probes for pathogens were coupled to markers known as mass codes. After amplification, incorporated mass codes were detected by mass spectroscopy allowing identification of the pathogen.

According to Thomas Briese, PhD, associate director of the Greene Infectious Disease Laboratory at the Mailman School, "This new platform can easily detect multiple pathogens in a couple of hours with minimal labor, and will allow comprehensive detection of co-infections."

"The high multiplexing capability and sensitivity of the approach is provided by using the digital molecular weights of small molecules to code for the identity of the pathogens and detection of the molecular tags with high sensitive mass spectrometry, which can be potentially miniaturized," stated coauthor, Jingyue Ju, PhD, Head of DNA Sequencing and Chemical Biology at the Columbia Genome Center.

The project, headquartered at the Mailman School’s Jerome L. and Dawn Greene Infectious Disease Laboratory, is a global effort, with partners from around the world providing input into assay design, clinical samples for validation, as well as opportunities to advance the science to the next, practical stages-including outbreak investigation, and blood product screening. Key partners in the work presented in the current publication include the Centro Nacional de Microbiologia of Spain, the Wadsworth Laboratory of the New York State Department of Health, Qiagen Inc, and Operon Inc. Application of the technology is already being evaluated through collaborative relationships with the National Institute for Communicable Diseases, South Africa, the University of Hong Kong, SAR, the Robert Koch-Institute, Germany, and the Bernhard-Nocht-Institute for Tropical Medicine, Germany.

Funding for the project was received from the National Institutes of Health / National Institute of Allergy and Infectious Disease, the Northeast Biodefense Center, and the Ellison Medical Foundation.

Stephanie Berger | EurekAlert!
Further information:
http://www.columbia.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>