Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


PET/MRI scans may help unravel mechanisms of prenatal drug damage


Scientists have demonstrated a new way to assess the potentially damaging effects of prenatal drug exposure--a technique that could also be used to monitor a fetus’s response to therapeutic drugs--using sophisticated, noninvasive medical imaging tools. Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory, whose findings are reported in the February issue of the Society of Nuclear Medicine’s Journal of Nuclear Medicine, used positron emission tomography (PET) combined with magnetic resonance imaging (MRI) to track the uptake and distribution of trace amounts of cocaine in pregnant monkeys and found significant differences in where and how fast the drug accumulates in maternal and fetal organs.

"Understanding how drugs are transferred between a mother and her fetus during pregnancy may help us unravel the mechanisms of the drug’s damaging effects on unborn children," said SNM member Helene Benveniste, M.D., Ph.D., chair of Brookhaven’s medical department in Upton, N.Y., and lead author of the paper, "Maternal and Fetal 11C-Cocaine Uptake and Kinetics Measured In Vivo by Combined PET and MRI in Pregnant Nonhuman Primates."

"While studies that follow human drug abusers and their children over decades provide valuable information, animal studies can more quickly provide clues to the underlying mechanisms of damage and suggest ways to test new treatment or prevention strategies," said Benveniste.

The imaging tools could also be used to assess the effects of therapeutic drugs, such as administering synthetic narcotics to pregnant women following surgical procedures performed on fetuses in utero. "Following such surgeries, which are becoming more common to correct congenital malformations, the mother is treated with narcotics for pain--and anesthesiologists are relying on the mother transferring the pain medication to the fetus via the placenta. But we actually do not know if what we give is sufficient to ’satisfy’ the pain level of the fetus," said Benveniste, who is also a professor of anesthesiology at Stony Brook University.

Though other scientists have attempted to use PET to noninvasively monitor maternal-fetal drug exchange and pharmacokinetics (how quickly a drug is taken up and distributed among the body’s organs), the PET technique alone did not provide adequate anatomical detail of the tiny fetal organs. The current study combined PET with high-resolution magnetic resonance imaging (MRI) to track cocaine pharmacokinetics down to the level of the placenta and individual regions of the fetal brain.

"The MRI images, which have the necessary detail, served as a high-resolution anatomical template onto which we ’overlaid’ the PET pharmacokinetic data using sophisticated computer techniques," Benveniste said. "The resulting images gave us the best of both worlds and allowed us to look at cocaine uptake and distribution in the mother and fetus simultaneously," she added.

The animals were anesthetized prior to scanning. MRI scans were performed first, followed by PET. For the PET study, each animal was injected with a trace quantity of cocaine--less than 10 micrograms, which is not enough to cause pharmacological effects. The injected cocaine had previously been "labeled," or "tagged," with a short-lived radioactive form of carbon (carbon-11). This radiotracer emits a signal that is picked up by the PET scanner, which takes snapshots of the tracer’s location over time to show how much and how quickly the cocaine (and/or the metabolic byproducts that retain the carbon-11) enters and clears the various organs. The radiotracer decays and completely clears from the animal’s body in about two hours. After the procedure, the animals were returned to their social colony to deliver their offspring.

The combined images show that cocaine and/or its labeled metabolites readily cross the placenta. But the cocaine uptake distribution pattern observed in the fetus was very different from that of the mother. For example, mothers showed rapid uptake and clearance of the drug in the heart, kidneys and lungs, with slower uptake in the liver and brain. In the fetus, cocaine accumulated at the highest levels in the liver (due to the unique anatomy of fetal circulation) and to a lesser extent in the brain.

"While the uptake of the tracer into the fetal brain is lower and slower than in the mother’s brain, a measurable quantity of cocaine and/or its labeled metabolites does accumulate in the fetal brain, particularly in the striatum, where cocaine is known to bind to cell-surface receptors that result in a euphoric response," Benveniste said.

The high uptake of radiolabeled cocaine in the placenta is also particularly relevant, the researchers said, because cocaine is known to constrict blood vessels in the placenta. It may be that this constriction of placental blood flow is one of the mechanisms underlying the harmful effects of cocaine exposure during pregnancy.

The research was funded by the Office of Biological and Environmental Research within the Department of Energy’s Office of Science and the National Institute on Drug Abuse. The monkeys were obtained from the Primate Laboratory, department of psychiatry, at the State University of New York (SUNY) Downstate, Brooklyn.

"Maternal and Fetal 11C-Cocaine Uptake and Kinetics Measured In Vivo by Combined PET and MRI in Pregnant Nonhuman Primates" was written by Benveniste; Joanna S. Fowler, Ph.D., William Rooney, Ph.D., and SNM member Yu-Shin Ding, Ph.D., all with Brookhaven’s chemistry department; Angela L. Baumann, M.D., Brookhaven’s medical department and the anesthesiology department of Stony Brook University; Daryn H. Moller, M.D., anesthesiology department, Stony Brook University; Congwu Du, Ph.D., Brookhaven’s medical department; Walter Backus, M.D., anesthesiology department, Stony Brook University; Jean Logan, Ph.D., and Pauline Carter, RN, both with Brookhaven’s chemistry department; Jeremy D. Coplan, M.D., psychiatry department, SUNY Downstate, Brooklyn; Anat Biegon, Ph.D., Brookhaven’s medical department; Leonard Rosenblum, Ph.D., and Bruce Scharf, DVM, both with the psychiatry department, SUNY Downstate, Brooklyn; John S. Gatley, Ph.D., Brookhaven’s medical department; and SNM member Nora D. Volkow, M.D., National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Md.

Maryann Verrillo | EurekAlert!
Further information:

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>