Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New point system enhances prognosis for GIST patients

07.02.2005


A research team at the Sahlgrenska Academy at Göteborg University in Sweden has developed a point system for calculating risk that will help physicians determine prognoses, survival rates, and the best methods of treatment for patients suffering from GIST tumors. The findings are being published in the prestigious medical journal Cancer.



GIST is a soft tissue tumor that occurs in the abdomen but differs from gastro-intestinal cancer. Nearly two hundred Swedes are affected every year. Long-term survival rates have been low. GIST tumors can grow very large and occupy a major section of the abdomen. Some tumors weigh as much as five kilos. For many years the only method of treatment was surgery, but over the last four years it is has been possible to combine surgery with new medicinal treatment in the form of the medicine Imatinib. The medicine is administered to inhibit the growth of the tumor and to prevent the emergence of new tumors and metastases.

Of all GIST patients, 44 percent develop highly aggressive tumors that in many cases are fatal. These patients should receive priority for medicinal treatment. The new medicine Imatinib is the first drug that effectively treats patients with malignant GIST.


“GIST tumors have been under-diagnosed. Therefore there is a great risk that patients will not receive optimal treatment. The development of Imatinib offers the first effective medicinal treatment of aggressive GIST. Therefore it has become absolutely essential for pathologists, surgeons, and oncologists to be able to diagnose this tumor correctly and to determine just how aggressive the tumor is in order to provide the best possible care,” says Professor Lars-Gunnar Kindblom, who directed the present study together with Professor Jeanne Meis-Kindblom and Associate Professor Bengt Nilsson.

On the basis of a unique study of all GIST cases in Western Sweden between the years 1983 and 2000, Lars-Gunnar Kindblom’s research team developed a system of points. Using this system it is possible to determine a patient’s prognosis in terms of both survival and the risk of developing new tumors. The system is based how large the tumor is and how quickly it is growing, which is determined by analyzing tissue samples.

The scientists divided the GIST patients into four groups­-extremely low risk, low risk, moderate risk, and high risk­-on the basis of the size of the tumor and an index that calculates how many cells are dividing. Of the 170 patients with GIST tumors classified as extremely low risk, low risk, and moderate risk, only one patient had a tumor that could not be operated on, and three patients had recurrent tumors. This can be compared with the 89 patients with high-risk tumors, among whom 36 had inoperable tumors and 35 developed new tumors after surgery. Among patients with high-risk tumors, 63 percent died as a result of their GIST tumors, as did 83 percent of those who had tumors that had already spread extensively. On the other hand, only one percent of the patients died of GIST among those with extremely low, low, and moderate risk levels.

Furthermore, the study shows that GIST is considerably more common that scientists previously believed. Worldwide, roughly 15 individuals per million develop the disease each year.

Ulrika Lundin | alfa
Further information:
http://www.sahlgrenska.gu.se/index_eng.jsp

More articles from Health and Medicine:

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>