Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New point system enhances prognosis for GIST patients

07.02.2005


A research team at the Sahlgrenska Academy at Göteborg University in Sweden has developed a point system for calculating risk that will help physicians determine prognoses, survival rates, and the best methods of treatment for patients suffering from GIST tumors. The findings are being published in the prestigious medical journal Cancer.



GIST is a soft tissue tumor that occurs in the abdomen but differs from gastro-intestinal cancer. Nearly two hundred Swedes are affected every year. Long-term survival rates have been low. GIST tumors can grow very large and occupy a major section of the abdomen. Some tumors weigh as much as five kilos. For many years the only method of treatment was surgery, but over the last four years it is has been possible to combine surgery with new medicinal treatment in the form of the medicine Imatinib. The medicine is administered to inhibit the growth of the tumor and to prevent the emergence of new tumors and metastases.

Of all GIST patients, 44 percent develop highly aggressive tumors that in many cases are fatal. These patients should receive priority for medicinal treatment. The new medicine Imatinib is the first drug that effectively treats patients with malignant GIST.


“GIST tumors have been under-diagnosed. Therefore there is a great risk that patients will not receive optimal treatment. The development of Imatinib offers the first effective medicinal treatment of aggressive GIST. Therefore it has become absolutely essential for pathologists, surgeons, and oncologists to be able to diagnose this tumor correctly and to determine just how aggressive the tumor is in order to provide the best possible care,” says Professor Lars-Gunnar Kindblom, who directed the present study together with Professor Jeanne Meis-Kindblom and Associate Professor Bengt Nilsson.

On the basis of a unique study of all GIST cases in Western Sweden between the years 1983 and 2000, Lars-Gunnar Kindblom’s research team developed a system of points. Using this system it is possible to determine a patient’s prognosis in terms of both survival and the risk of developing new tumors. The system is based how large the tumor is and how quickly it is growing, which is determined by analyzing tissue samples.

The scientists divided the GIST patients into four groups­-extremely low risk, low risk, moderate risk, and high risk­-on the basis of the size of the tumor and an index that calculates how many cells are dividing. Of the 170 patients with GIST tumors classified as extremely low risk, low risk, and moderate risk, only one patient had a tumor that could not be operated on, and three patients had recurrent tumors. This can be compared with the 89 patients with high-risk tumors, among whom 36 had inoperable tumors and 35 developed new tumors after surgery. Among patients with high-risk tumors, 63 percent died as a result of their GIST tumors, as did 83 percent of those who had tumors that had already spread extensively. On the other hand, only one percent of the patients died of GIST among those with extremely low, low, and moderate risk levels.

Furthermore, the study shows that GIST is considerably more common that scientists previously believed. Worldwide, roughly 15 individuals per million develop the disease each year.

Ulrika Lundin | alfa
Further information:
http://www.sahlgrenska.gu.se/index_eng.jsp

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>