Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV Vaccine Trial Breaks Ground for Future Research

04.02.2005


The results of the world’s first phase 3 HIV vaccine efficacy trial are reported in the March 1 issue of The Journal of Infectious Diseases, now available online. Although the vaccine was ineffective in preventing HIV infection, the trial represents a landmark in the fight against HIV and offers the scientific community a foundation on which to build future trials.



The multi-centered trial, conducted in the United States and the Netherlands and completed in 2003, is described in two papers by the rgp120 HIV Vaccine Study Group, and Peter B. Gilbert and colleagues, which address the vaccine efficacy results and the immunologic responses of the study participants.

The vaccine, produced by VaxGen, was a recombinant construct of the HIV envelope glycoprotein, similar to the type of vaccine used to develop a vaccine for hepatitis B. The vaccine was tested in a double-blind, randomized study of healthy participants who did not use intravenous drugs. The volunteers were men who have sex with men or women at high risk for heterosexual transmission. The vaccine and placebo were given by injection seven times over 30 months and the participants were assessed for risk. At each visit the participants were tested for HIV infection, and for those who were positive, HIV-1 plasma RNA load and CD4 cell counts were monitored on a regular basis for 24 months after the initial diagnosis.


Of the 5,417 volunteers who were enrolled, 368 became infected during the study. The vaccine was found not to be effective in preventing HIV infection; infection rates among those who were given the vaccine and those who were given placebo were 6.7 percent and 7.0 percent, respectively. Of those who became infected during the study, pre-treatment viral loads were similar in the placebo and vaccine groups over their follow-up visits.

During analysis of various subgroups of the study population, a higher, though statistically insignificant, vaccine efficacy was found in the high-risk and the non-white groups. The authors suggested two plausible explanations, one for each group. Those with high-risk behavior may have been exposed frequently to HIV and a primed immune response, probably cellular or humoral, could have worked with the vaccine and caused a greater ability to resist the virus. For the non-white group, the authors suggest that biological differences in immune response or genetic markers of resistance to infection could have made the vaccine more effective.

Also examined in the trial were the immune responses to the vaccine. The vaccine was able to generate antibody responses in virtually all participants, and, in general, those with a higher response had a lower rate of infection than the placebo group. In an editorial accompanying the two papers, Barney Graham and John Mascola of the Vaccine Research Center of the National Institutes for Health commented that more research is needed to be sure whether a high vaccine antibody response is related to a lower incidence of HIV infection. Citing the possible slight vaccine efficacy for non-white and high-risk participants of the trial, they urged that future vaccines be studied in a wide range of racial, ethnic, and diverse risk-level groups. They concluded that the landmark study will inform future studies, and an HIV vaccine will be found only through robust public and private investment as well as a well-informed public and scientific community.

Steve Baragona | EurekAlert!
Further information:
http://www.idsociety.org

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>