Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the brain creates false memories

02.02.2005


Lawyers are often suspicious of so-called "eye-witness accounts" and rightly so. Hundreds of scientific studies in the past few decades have shown that the memories of people who observe complex events are notoriously susceptible to alteration if they receive misleading information about the event after it has taken place. In this month’s issue of the journal Learning & Memory, scientists from Johns Hopkins University report new insights into how such "false memories" are formed. This is the first study to use neuroimaging to investigate how the brain encodes misinformation during the creation of a false memory.



Using advanced, non-invasive imaging techniques, Yoko Akado and Craig Stark compared the areas of the brain that were active when a subject was encoding a complex event and afterwards, during exposure to misleading information. For example, subjects were asked to watch a vignette comprised of 50 photographic slides showing a man stealing a woman’s wallet, then hiding behind a door. A little later, the subjects were shown what they thought was the same sequence of slides but unbeknownst to them the second set of slides contained a misleading item and differed in small ways from the original--the man hid behind a tree, for example, not a door.

Two days later, the subjects took a memory test, which asked them to recall details such as where the man hid, and which presentation--the first, second, or both--contained that information. Memory for a misinformation item was scored as a false memory only if the subject attributed the item to either the original presentation or to both the original and second slide presentations.


Stark and Akado found clear evidence that the subjects’ brain activity predicted if their memories of the theft would be accurate or false. Consistent with findings from numerous previous studies that have reported that areas such as the hippocampus are highly active during memory formation, Okado and Stark found activity in the left hippocampus tail as well as perirhinal cortex was correlated with successful encoding of an item in memory, even when the memory that was formed was for a false item. But in subjects who had formed false memories, it was noticeable that activity in other brain areas such as the prefrontal cortex was weak during exposure to the second sequence of slides compared to during the original viewing.

Okada and Stark suggest that activity in the prefrontal cortex is correlated to encoding the source, or context, of the memory. Thus, weak prefrontal cortex activity during the misinformation phase indicaates that the details of the second experience were poorly placed in a learning context, and as a result more easily embedded in the context of the first event, creating false memories.

Susan J. Cushman | EurekAlert!
Further information:
http://www.uth.tmc.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>