Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New bedside tool gauges mortality risk in heart failure patients

02.02.2005


For the first time, UCLA researchers have developed a new evaluation tool that can predict mortality risk in patients hospitalized with heart failure. The new tool -- used right at the bedside -- will help clinicians quickly decide upon hospital admission which patients are at a greater mortality risk that may require higher monitoring and earlier, more intensive intervention.



Published in the February 2, 2005 edition of JAMA, the new tool utilizes the combination of three simple measures obtained through laboratory blood tests and by measuring vital signs. Heart failure is a condition that affects five million Americans and is the leading cause of hospitalization for those over age 65.

"The new tool is a first for the treatment of acute heart failure, and offers a simple quick way for clinicians to assess mortality risk upon hospital admission and quickly decide on a treatment strategy," said Dr. Gregg C. Fonarow, lead study author, The Eliot Corday Chair in Cardiovascular Medicine and Science, professor of cardiology, David Geffen School of Medicine at UCLA and director, Ahmanson-UCLA Cardiomyopathy Center.


Using data from a national registry of over 100,000 heart failure patients called the Acute Decompensated Heart Failure National Registry (ADHERE®), researchers developed a risk model after analyzing 33,046 hospitalizations. The model was developed using a relatively new statistical technique know as Classification and Regression Tree Analysis (CART). The validity of the model was then tested using data from an additional 32,229 hospitalizations.

Researchers evaluated 39 possible factors as survival indicators upon hospital admission and found that the best single predictor for mortality was a high blood urea nitrogen level, (above 43 mg/dL), followed by a low systolic blood pressure (above 115 mm Hg) and a high serum creatinine (higher than 2.75 mg/dL).

"This validated risk tree provides clinicians with a practical, easy tool to use at the bedside" said Fonarow. "We were surprised that the risk tool using only three variables was able to dramatically distinguish between low, intermediate, and high risk heart failure patients."

The overall mortality risk for patients hospitalized with acute heart failure was 4.1 percent. The model determined mortality risk levels starting from low risk at 2.1 percent, up to 21.9 percent for patients at the highest mortality risk.

Fonarow adds that two of the top mortality risk indicators -- blood urea nitrogen level and serum creatinine -- involve renal or kidney function, which emphasizes the importance of this area in heart failure patients that may warrant further study.

The new risk evaluation tool is now ready for clinical use, according to Fonarow, and can be applied at hospitals across the country. In addition, the new model may provide a more effective way to design clinical trials for evaluating heart failure therapies since researchers now have the ability to easily categorize patients by high and low mortality risk.

The study was funded by Scios, Inc., a biopharmaceutical company and member of the Johnson and Johnson Family of Companies. The ADHERE Registry, also funded by Scios, Inc., collects observational data from across the United States in order to track and study the medical management of patients hospitalized with acute heart failure. ADHERE is overseen by an independent scientific advisory committee of nationally recognized heart failure experts, including the study authors.

Additional study authors include: Dr. Kirkwood F. Adams, Jr., Division of Cardiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Dr. William T. Abraham, Department of Cardiology, The Ohio State University Medical Center, Columbus, Ohio; Dr. Clyde W. Yancy, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas; and W. John Boscardin, Ph.D., Department of Biostatisics, University of California, Los Angeles.

Rachel Champeau | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>