New nicotine-like imaging agent holds promise in PET studies, may help diagnose Alzheimer’s disease

The chemical nicotine–a main ingredient in tobacco–may hold promise in the early diagnosis of Alzheimer’s disease, give insight into therapeutic interventions for nicotine addiction and possibly complement the diagnosis of certain forms of lung cancer, according to a study in the January issue of the Society of Nuclear Medicine’s Journal of Nuclear Medicine.


Researchers are examining nicotine’s cognitive, behavioral and addictive actions, and, by looking at targets in the brain where nicotine acts, researchers hope to address several major health problems, said SNM member Jogeshwar Mukherjee, Ph.D., associate professor in residence at the department of psychiatry and human behavior, Brain Imaging Center, at the University of California at Irvine (UCI). A team of researchers from UCI and the Kettering Medical Center in Dayton, Ohio, found that imaging studies with a new fluorine-18 labeled imaging agent, nifrolidine, complement other ongoing positron emission tomography (PET) studies currently underway with nicotine-like PET imaging agents.

Nifrolidine was developed to specifically bind to a receptor (protein) that is present in the human and nonhuman brain; this receptor is involved in several brain functions, particularly cognition and certain aspects of learning and memory, according to Mukherjee. By binding at the same place as nicotine, nifrolidine helps to measure how and where nicotine acts. PET studies can be performed with nifrolidine to provide information on the receptor present in various regions of the brain. “Research has shown that with Alzheimer’s disease there is a gradual loss of these receptors; therefore, there is a potential of early diagnostic value in nifrolidine-PET imaging,” he said.

In addition, nicotine addiction and lung cancer may be linked to this receptor. The availability of a good PET imaging agent for this receptor will allow preclinical and clinical studies, leading to better understanding of different medical conditions and eventually helping in their diagnosis and treatment, said Mukherjee.

Additional research and work with animal subjects must be completed before this tracer can be used to demonstrate applications in human studies, said the co-author of “Synthesis and Evaluation of Nicotine á4â2 Receptor Radioligand, 5-(3’-18F-Fluoropropyl)-3-(2-(S)- Pyrrolidinylmethoxy) Pyridine, in Rodents and PET in Nonhuman Primate.” The team plans to obtain complete toxicity and dosimetry data in order to obtain approval for conducting human studies.

“Synthesis and Evaluation of Nicotine á4â2 Receptor Radioligand, 5-(3’-18F-Fluoropropyl)-3-(2-(S)- Pyrrolidinylmethoxy) Pyridine, in Rodents and PET in Nonhuman Primate” was written by Sankha Chattopadhyay, Ph.D., Baogang Xue, M.D., Daphne Collins, B.E., and Rama Pichika, Ph.D., all at the department of psychiatry and human behavior, Brain Imaging Center, University of California, Irvine, Calif.; Rudy Bagnera, B.S., and Frances M. Leslie, Ph.D., both at the department of pharmacology, University of California, Irvine, Calif.; Bradley T. Christian, Ph.D., Bingzhi Shi, Ph.D., and Tanjore K. Narayanan, Ph.D., all at the department of PET/nuclear medicine, Kettering Medical Center, Dayton, Ohio; and Steven G. Potkin, M.D., and Jogeshwar Mukherjee, Ph.D., both at the department of psychiatry and human behavior, Brain Imaging Center, University of California, Irvine, Calif.

Media Contact

Maryann Verrillo EurekAlert!

More Information:

http://www.snm.org

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

“Nanostitches” enable lighter and tougher composite materials

In research that may lead to next-generation airplanes and spacecraft, MIT engineers used carbon nanotubes to prevent cracking in multilayered composites. To save on fuel and reduce aircraft emissions, engineers…

Trash to treasure

Researchers turn metal waste into catalyst for hydrogen. Scientists have found a way to transform metal waste into a highly efficient catalyst to make hydrogen from water, a discovery that…

Real-time detection of infectious disease viruses

… by searching for molecular fingerprinting. A research team consisting of Professor Kyoung-Duck Park and Taeyoung Moon and Huitae Joo, PhD candidates, from the Department of Physics at Pohang University…

Partners & Sponsors