Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New nicotine-like imaging agent holds promise in PET studies, may help diagnose Alzheimer’s disease

01.02.2005


The chemical nicotine--a main ingredient in tobacco--may hold promise in the early diagnosis of Alzheimer’s disease, give insight into therapeutic interventions for nicotine addiction and possibly complement the diagnosis of certain forms of lung cancer, according to a study in the January issue of the Society of Nuclear Medicine’s Journal of Nuclear Medicine.



Researchers are examining nicotine’s cognitive, behavioral and addictive actions, and, by looking at targets in the brain where nicotine acts, researchers hope to address several major health problems, said SNM member Jogeshwar Mukherjee, Ph.D., associate professor in residence at the department of psychiatry and human behavior, Brain Imaging Center, at the University of California at Irvine (UCI). A team of researchers from UCI and the Kettering Medical Center in Dayton, Ohio, found that imaging studies with a new fluorine-18 labeled imaging agent, nifrolidine, complement other ongoing positron emission tomography (PET) studies currently underway with nicotine-like PET imaging agents.

Nifrolidine was developed to specifically bind to a receptor (protein) that is present in the human and nonhuman brain; this receptor is involved in several brain functions, particularly cognition and certain aspects of learning and memory, according to Mukherjee. By binding at the same place as nicotine, nifrolidine helps to measure how and where nicotine acts. PET studies can be performed with nifrolidine to provide information on the receptor present in various regions of the brain. "Research has shown that with Alzheimer’s disease there is a gradual loss of these receptors; therefore, there is a potential of early diagnostic value in nifrolidine-PET imaging," he said.


In addition, nicotine addiction and lung cancer may be linked to this receptor. The availability of a good PET imaging agent for this receptor will allow preclinical and clinical studies, leading to better understanding of different medical conditions and eventually helping in their diagnosis and treatment, said Mukherjee.

Additional research and work with animal subjects must be completed before this tracer can be used to demonstrate applications in human studies, said the co-author of "Synthesis and Evaluation of Nicotine á4â2 Receptor Radioligand, 5-(3’-18F-Fluoropropyl)-3-(2-(S)- Pyrrolidinylmethoxy) Pyridine, in Rodents and PET in Nonhuman Primate." The team plans to obtain complete toxicity and dosimetry data in order to obtain approval for conducting human studies.

"Synthesis and Evaluation of Nicotine á4â2 Receptor Radioligand, 5-(3’-18F-Fluoropropyl)-3-(2-(S)- Pyrrolidinylmethoxy) Pyridine, in Rodents and PET in Nonhuman Primate" was written by Sankha Chattopadhyay, Ph.D., Baogang Xue, M.D., Daphne Collins, B.E., and Rama Pichika, Ph.D., all at the department of psychiatry and human behavior, Brain Imaging Center, University of California, Irvine, Calif.; Rudy Bagnera, B.S., and Frances M. Leslie, Ph.D., both at the department of pharmacology, University of California, Irvine, Calif.; Bradley T. Christian, Ph.D., Bingzhi Shi, Ph.D., and Tanjore K. Narayanan, Ph.D., all at the department of PET/nuclear medicine, Kettering Medical Center, Dayton, Ohio; and Steven G. Potkin, M.D., and Jogeshwar Mukherjee, Ph.D., both at the department of psychiatry and human behavior, Brain Imaging Center, University of California, Irvine, Calif.

Maryann Verrillo | EurekAlert!
Further information:
http://www.snm.org

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>