Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World-class formula for fighting disease

28.01.2005


One of the most exciting developments in clinical research in decades is taking place at the University of Leeds, led by our professor of cancer medicine Peter Selby in collaboration with the Medical Research Council. The creation of a new network for world-class researchers in subjects such as medicines for children, Alzheimer’s, diabetes, mental health and strokes will benefit patients through translating cutting-edge research into new forms of treatment and the best possible chance of recovery.

In 2001, Professor Selby set up the National Cancer Research Network (NCRN). The network has already doubled the number of people involved in cancer clinical trials from 7,500 to 20,000 each year in England and is improving the quality and participation in clinical cancer research.

The model is now being extended across a wide range of diseases as the UK Clinical Research Network. The aim is to ensure that more patients benefit from leading edge medical research as quickly as possible and, following a competitive tender, Leeds is again to be at the forefront of the work. “The creation of the UK Clinical Research Network is the most exciting development in clinical research nationally – or indeed internationally – in recent decades,” Professor Selby said. “It will bring together partner organisations to speed up the development of new medicines and treatments from the laboratory to the patient’s bedside, meaning more patients benefit from the latest scientific advances and ensure health care is based on sound evidence. Our evidence-based approach should place the UK at the forefront of clinical research.”



In addition, the news means the University of Leeds can truly claim a world-class level of expertise, Professor Selby said, enabling it to recruit some 35 staff to begin the new work.

The new network will be co-ordinated by a consortium of the University of Leeds, Leeds Teaching Hospitals NHS trust, University College London and the Medical Research Council clinical trials unit in London. The co-ordinating centre will be co-located in Leeds and London and will be directed by Professor Selby and Professor Janet Darbyshire of the Medical Research Council clinical trials unit. The government is providing substantial funding. In the last budget the health secretary announced an extra £100m a year by 2008 for research and development in the priority areas, the biggest ever increase in research funding targeting these diseases.

Professor Selby said that recent scientific advances in cell and molecular biology, molecular genetics, immunology and pharmacology had radically improved our basic understanding of the mechanisms of disease – and demonstrated many potential new approaches to its prevention, diagnosis and treatment. But turning this basic science into patient benefit required more high quality clinical research, which must be carried out against the background of ever increasing regulation to ensure patient safety.

In the UK these scientific needs have been addressed by substantial new government investment and the creation of networks designed to ensure rapid progress in clinical research. For research has shown that cancer patients being treated in units where a large proportion are enlisted on clinical trials tend to do better than the average, partly because trials generally bring a better standard of care.
“However, it can be difficult and time-consuming to get patients admitted to trials and many clinicians lack the time or resources to handle the extra workload. But the cancer network has proved it is possible to support the clinical researchers making admission into trials swifter and so speeding up the whole research effort.

Professor Selby said his team achieved their success by liaising closely with 34 local cancer networks up and down the country. “We aimed to give guidance centrally while encouraging local ownership,” he said. “Although ring-fenced money is clearly vital, our success was really about motivating people to come on board.” Once patients and clinicians had agreed to take part in trials, network staff were able to take over many of the difficult steps like co-ordinating disparate funding bodies, organising peer reviews and gaining regulatory approval for trials, as well as supporting patients in trials. The enthusiasm and support of patients has been a wonderful element in the NCRN.

Professor Selby set up a specialist medical oncology service in Leeds in 1988 and, with support from the NHS and other agencies and it has expanded around Yorkshire to become one of the country’s largest and most successful regional oncology services and training programmes. He was also a leading member of the expert advisory group which proposed – and achieved – the reorganisation of cancer services in the UK.

“This is an exciting time for researchers who are seeking to take the major advances of the biology laboratories and develop them into successful medical care,” he said. “In about five years time I fully expect the clinical research network to be even more comprehensive, covering most if not all the main healthcare areas – that is our ultimate aim.

Vanessa Bridge | alfa
Further information:
http://www.leeds.ac.uk

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>