Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New highly active agents against leishmaniasis

25.01.2005


Parasitic diseases, especially leishmaniases and trypanosomiases, kill hundreds of thousands of people every year in the world, mainly in the countries of the South. The most severe form of leishmaniosis (kala-azar, the visceral form), induced by Leishmania donovani and L. infantum, affects about 500 000 people per year and proves fatal if no treatment is given.



Although drugs do exist for treating these diseases, they are not always effective, owing to the appearance of resistant parasites and to the toxicity of the products. Moreover, administration of the available treatments against leishmaniases is mainly by injection, which means that patients have to go to hospital. Most people infected live in areas either far from health-care facilities or completely devoid of them. Research for new substances with potential as therapeutic agents is consequently necessary.

IRD researchers conducted ethno-pharmacological studies in line with this search, in South America. These scientists, working with researchers from the CNRS, the University of Paris-Sud and the Institut Pasteur (1), have thus discovered and studied alkaloids of the chemical family of the quinolines, doted with antiparasitic properties. The quinolines, obtained by chemical synthesis, are analogues of quinolines initially isolated from a Bolivian plant, Galipea longiflora (Rutaceae). Experiments conducted on mice infected by visceral leishmaniasis showed that oral administration of these quinolines was effective for treating this severe form of the disease (2).


The general chemical structure of quinolines comprises two rings (the quinoleic nucleus), one aromatic and the other bearing nitrogen (pyridinic) on to which variable substitution groups can bind depending on their character and position. In order to select the most active molecule, the least toxic and the easiest to synthesize, about 100 substituted quinolines were prepared and tested in vitro on different parasites, particularly those responsible for the cutaneous and visceral forms of leishmaniasis, then on two retroviruses, HIV (responsible for the Aids pandemic) and HTLV-1 (human T-cell leukaemia virus).

HTLV-1, which was the first retrovirus discovered (1980), currently affects 15 to 20 million people in the world, essentially in South-West Japan, the Caribbean, Latin America and tropical Africa. It can cause a specific form of leukaemia and a slowly developing degradation of the nervous system (tropical spastic paraparesia).

The activity of these substances is closely linked to their chemical structure, and especially to the length of the substitution group (number of carbon atoms) located in position 2 on the quinoleic nucleus. Generally, the most active quinolines are those which carry a three-carbon-atom branch and an unsaturated (alkenyl) bond.

Among these compounds, some proved especially active against parasites of the genus Leishmania, showing an efficacy equal to or higher than that of the reference drug for treating leishmaniases, glucantime®. Experiments run on mice confirmed that oral administration of these quinolines was effective and that toxicity was low for this animal. The adoption of this administration route would simplify treatment of patients in regions devoid of hospital infrastructures. Three of these compounds were eventually chosen for their biological activity, their innocuousness and their ease of synthesis. They are currently the focus of investigations on their action mechanism, their behaviour in the human organism and their toxicity.

Among the quinolines active against leishmaniases, some were also able to block, in vitro, the replication of the retrovirus HIV-1, without manifesting any toxicity against their host cells. Others were revealed to be active against HTLV-1, one being capable of inhibiting retrovirus replication, at very small doses by reducing the viral load by 76% (3).

The quinolines consequently are compounds worthy of investigation in line with the search for new treatments for infections that are insufficiently combated by existing medicines. Research work and development of these compounds active against leishmaniases are planned, in partnership with Brazil, with the particular aim of perfecting their production at industrial scale. Furthermore, assessment of their antiretroviral activity (HTLV-1) is being continued in a joint scientific project set up between the scientists and a research laboratory of the FIOCRUZ (Fondation Oswaldo Cruz, Salvador).

Marie Guillaume – IRD
Translation : Nicholas Flay

(1) This research work stems from collaboration between the IRD, UMR C8076 CNRS (BioCIS) - Pharmacy Faculty of Châtenay-Malabry, the Pharmacognosy laboratory of the University Paris-Sud and the Institut Pasteur.

(2) Natural quinolines were the subject of a first IRD patent application in 1991. Reférence: Fournet A., Angelo Barrios A., Muñoz V., Hocquemiller R., Roblot F., Bruneton J., Richomme P., Gantier J. C. 1992. Quinoléines 2-substituées pour le traitement des leishmanioses. Brevet PCT/FR92/00903. The in vivo experiments were performed at the time by IRD researchers in partnership with Bolivian scientists. The work undertaken by researchers from the IRD, the Institut Pasteur and the CNRS (UMR C8076 CNRS (BioCIS), Pharmacy Faculty of Châtenay-Malabry) led to the filing of a new CNRS-IRD patent application in 2001.

(3) Some quinolines also show activity against Trypanosoma cruzi, the parasite responsible for Chagas’ disease, which indeed was at least as strong as the reference medicine used to treat the disease.

Marie Guillaume | alfa
Further information:
http://www.ird.fr/us/actualites/fiches/2004/fiche216.htm

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>