Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New highly active agents against leishmaniasis

25.01.2005


Parasitic diseases, especially leishmaniases and trypanosomiases, kill hundreds of thousands of people every year in the world, mainly in the countries of the South. The most severe form of leishmaniosis (kala-azar, the visceral form), induced by Leishmania donovani and L. infantum, affects about 500 000 people per year and proves fatal if no treatment is given.



Although drugs do exist for treating these diseases, they are not always effective, owing to the appearance of resistant parasites and to the toxicity of the products. Moreover, administration of the available treatments against leishmaniases is mainly by injection, which means that patients have to go to hospital. Most people infected live in areas either far from health-care facilities or completely devoid of them. Research for new substances with potential as therapeutic agents is consequently necessary.

IRD researchers conducted ethno-pharmacological studies in line with this search, in South America. These scientists, working with researchers from the CNRS, the University of Paris-Sud and the Institut Pasteur (1), have thus discovered and studied alkaloids of the chemical family of the quinolines, doted with antiparasitic properties. The quinolines, obtained by chemical synthesis, are analogues of quinolines initially isolated from a Bolivian plant, Galipea longiflora (Rutaceae). Experiments conducted on mice infected by visceral leishmaniasis showed that oral administration of these quinolines was effective for treating this severe form of the disease (2).


The general chemical structure of quinolines comprises two rings (the quinoleic nucleus), one aromatic and the other bearing nitrogen (pyridinic) on to which variable substitution groups can bind depending on their character and position. In order to select the most active molecule, the least toxic and the easiest to synthesize, about 100 substituted quinolines were prepared and tested in vitro on different parasites, particularly those responsible for the cutaneous and visceral forms of leishmaniasis, then on two retroviruses, HIV (responsible for the Aids pandemic) and HTLV-1 (human T-cell leukaemia virus).

HTLV-1, which was the first retrovirus discovered (1980), currently affects 15 to 20 million people in the world, essentially in South-West Japan, the Caribbean, Latin America and tropical Africa. It can cause a specific form of leukaemia and a slowly developing degradation of the nervous system (tropical spastic paraparesia).

The activity of these substances is closely linked to their chemical structure, and especially to the length of the substitution group (number of carbon atoms) located in position 2 on the quinoleic nucleus. Generally, the most active quinolines are those which carry a three-carbon-atom branch and an unsaturated (alkenyl) bond.

Among these compounds, some proved especially active against parasites of the genus Leishmania, showing an efficacy equal to or higher than that of the reference drug for treating leishmaniases, glucantime®. Experiments run on mice confirmed that oral administration of these quinolines was effective and that toxicity was low for this animal. The adoption of this administration route would simplify treatment of patients in regions devoid of hospital infrastructures. Three of these compounds were eventually chosen for their biological activity, their innocuousness and their ease of synthesis. They are currently the focus of investigations on their action mechanism, their behaviour in the human organism and their toxicity.

Among the quinolines active against leishmaniases, some were also able to block, in vitro, the replication of the retrovirus HIV-1, without manifesting any toxicity against their host cells. Others were revealed to be active against HTLV-1, one being capable of inhibiting retrovirus replication, at very small doses by reducing the viral load by 76% (3).

The quinolines consequently are compounds worthy of investigation in line with the search for new treatments for infections that are insufficiently combated by existing medicines. Research work and development of these compounds active against leishmaniases are planned, in partnership with Brazil, with the particular aim of perfecting their production at industrial scale. Furthermore, assessment of their antiretroviral activity (HTLV-1) is being continued in a joint scientific project set up between the scientists and a research laboratory of the FIOCRUZ (Fondation Oswaldo Cruz, Salvador).

Marie Guillaume – IRD
Translation : Nicholas Flay

(1) This research work stems from collaboration between the IRD, UMR C8076 CNRS (BioCIS) - Pharmacy Faculty of Châtenay-Malabry, the Pharmacognosy laboratory of the University Paris-Sud and the Institut Pasteur.

(2) Natural quinolines were the subject of a first IRD patent application in 1991. Reférence: Fournet A., Angelo Barrios A., Muñoz V., Hocquemiller R., Roblot F., Bruneton J., Richomme P., Gantier J. C. 1992. Quinoléines 2-substituées pour le traitement des leishmanioses. Brevet PCT/FR92/00903. The in vivo experiments were performed at the time by IRD researchers in partnership with Bolivian scientists. The work undertaken by researchers from the IRD, the Institut Pasteur and the CNRS (UMR C8076 CNRS (BioCIS), Pharmacy Faculty of Châtenay-Malabry) led to the filing of a new CNRS-IRD patent application in 2001.

(3) Some quinolines also show activity against Trypanosoma cruzi, the parasite responsible for Chagas’ disease, which indeed was at least as strong as the reference medicine used to treat the disease.

Marie Guillaume | alfa
Further information:
http://www.ird.fr/us/actualites/fiches/2004/fiche216.htm

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>