Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vaccinating school children and high risk groups is best strategy for slowing flu transmission

25.01.2005


The best strategy for minimizing future influenza morbidity and mortality would be to concentrate vaccinations in school children and high-risk groups, according to a new research commentary by scientists at Emory University. The alternative vaccine plan is based on mathematical models developed by Ira Longini, PhD, and Elizabeth Halloran, MD, DSc, professors of biostatistics in Emory’s Rollins School of Public Health, and on influenza field studies. The report will be published in the February 15 issue of The American Journal of Epidemiology.



The mathematical models show that vaccinating about 70 percent of school children, ages 6 to 18, with influenza vaccine would reduce community-wide transmission to very low levels. School children are the population group generally most responsible for transmission of influenza because of more exposure potential and less prior immunity than adults. Even if only 50 percent of school children could be vaccinated, this would still result in a considerable reduction in transmission within the community, according to the models. The vaccine strategy over the last several years has been based on distributing vaccine primarily to high-risk groups, and such a strategy has not been very effective in reducing influenza deaths and illness, the researchers assert. Due to the current vaccine shortage, this same strategy has been enacted with the further stipulation that vaccine be limited to high risk and other predefined groups, but not to low risk school children.

The researchers suggest that the alternative strategy of vaccinating children and high risk groups would require around 120 million doses of vaccine per season, taking into account the fact that many high-risk people are never vaccinated. They recommend that the federal government guarantee the purchase and distribution of that many doses of vaccine each year in order to stabilize production. This strategy not only would be effective for normal yearly flu outbreaks, but also for years of pandemic influenza when supplies of vaccine are more limited.


The Emory researchers cite several field studies by other research groups showing that mass vaccination of children can be effective in reducing influenza transmission in an entire community. "Many influenza researchers have believed for decades that vaccinating school children would be an important indirect way to reduce influenza transmission," Dr. Longini says. "This strategy has never been carried out in the US, however, possibly because public health officials have until now mostly considered the direct protective effects of vaccination, and school children are not considered a high-risk group."

The Emory researchers suggest it would be important to evaluate such a strategy carefully. One option would be to mass vaccinate school children in several states, with other states used as comparisons. "The current vaccine shortage gives public health officials the opportunity to reconsider what we believe is a very important alternative strategy of vaccinating school children in addition to high-risk groups," Dr. Halloran says. "If this strategy were adopted, the incidence of influenza could be monitored in states that adopted the strategy and those that did not."

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Health and Medicine:

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

nachricht Disrupted fat breakdown in the brain makes mice dumb
19.05.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>