Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vaccinating school children and high risk groups is best strategy for slowing flu transmission

25.01.2005


The best strategy for minimizing future influenza morbidity and mortality would be to concentrate vaccinations in school children and high-risk groups, according to a new research commentary by scientists at Emory University. The alternative vaccine plan is based on mathematical models developed by Ira Longini, PhD, and Elizabeth Halloran, MD, DSc, professors of biostatistics in Emory’s Rollins School of Public Health, and on influenza field studies. The report will be published in the February 15 issue of The American Journal of Epidemiology.



The mathematical models show that vaccinating about 70 percent of school children, ages 6 to 18, with influenza vaccine would reduce community-wide transmission to very low levels. School children are the population group generally most responsible for transmission of influenza because of more exposure potential and less prior immunity than adults. Even if only 50 percent of school children could be vaccinated, this would still result in a considerable reduction in transmission within the community, according to the models. The vaccine strategy over the last several years has been based on distributing vaccine primarily to high-risk groups, and such a strategy has not been very effective in reducing influenza deaths and illness, the researchers assert. Due to the current vaccine shortage, this same strategy has been enacted with the further stipulation that vaccine be limited to high risk and other predefined groups, but not to low risk school children.

The researchers suggest that the alternative strategy of vaccinating children and high risk groups would require around 120 million doses of vaccine per season, taking into account the fact that many high-risk people are never vaccinated. They recommend that the federal government guarantee the purchase and distribution of that many doses of vaccine each year in order to stabilize production. This strategy not only would be effective for normal yearly flu outbreaks, but also for years of pandemic influenza when supplies of vaccine are more limited.


The Emory researchers cite several field studies by other research groups showing that mass vaccination of children can be effective in reducing influenza transmission in an entire community. "Many influenza researchers have believed for decades that vaccinating school children would be an important indirect way to reduce influenza transmission," Dr. Longini says. "This strategy has never been carried out in the US, however, possibly because public health officials have until now mostly considered the direct protective effects of vaccination, and school children are not considered a high-risk group."

The Emory researchers suggest it would be important to evaluate such a strategy carefully. One option would be to mass vaccinate school children in several states, with other states used as comparisons. "The current vaccine shortage gives public health officials the opportunity to reconsider what we believe is a very important alternative strategy of vaccinating school children in addition to high-risk groups," Dr. Halloran says. "If this strategy were adopted, the incidence of influenza could be monitored in states that adopted the strategy and those that did not."

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>