Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method to fix cleft palate shows promise in Mayo Clinic lab study

24.01.2005


Results from a Mayo Clinic laboratory study in animals suggest that using distraction osteogenesis, a procedure that uses the mechanical force of an appliance to lengthen soft tissue and bone, may be a feasible and effective method to repair cleft palate in the future. Cleft palate is a common birth defect in which a child is born with a gap in the roof of the mouth. This condition occurs in one out of 700 to 1,000 births in the United States.



"Right now, nobody tries to close cleft palate with distraction osteogenesis," says Eric Moore, M.D., Mayo Clinic otorhinolaryngologist and one of the study’s investigators. "It’s used in other areas of the body and other craniofacial problems, but not in cleft palate. Before taking it to the clinic to use in people, we wanted to try it in an animal model. This study tells us that it is possible to close cleft palate with distraction osteogenesis."

The Mayo Clinic researchers conducted this study in animals in order to find a method of repairing a child’s cleft palate that would be even better than the current standard surgery. The distraction osteogenesis method is designed to gradually lengthen the bone of the palate through tension. An appliance made of a central body piece, four plates and screws is surgically inserted with the patient under anesthesia. After a rest period of 10 days, a key in the appliance is turned slightly each day for four weeks to slowly lengthen the bone and soft tissue. Finally, the device is surgically removed.


"This method of repairing a cleft palate is potentially superior to standard surgery because it brings in bone and soft tissue to cover the opening," says Bob Tibesar, M.D., chief resident in Mayo Clinic Department of Otorhinolaryngology and a study investigator. "This has positive implications for the shape of the palate and for speech later."

Currently, standard treatment for cleft palate repair involves surgery in which the mucosal flaps of the roof of the mouth are sewn together over the cleft. The actual missing bone is not repaired. Some of the potential downsides of this repair method, according to Dr. Moore, can include leaving exposed areas of hard palate bone, producing scars that sometimes interfere with the child’s later midfacial growth. This growth impairment can lead not only to a poor cosmetic appearance, but also can lead to poor contact between lower and upper teeth when the child’s mouth is closed. The lack of actual bony repair of the cleft, in addition to the tension placed on the mucosal flaps on the roof of the mouth during traditional cleft palate repair surgery, also increases risk of the wound splitting open or the creation of an abnormal passage between the mouth and nose. The current repair method also may shorten and scar the soft palate, which can impair speech.

The study of this method of cleft palate repair was conducted on 10 adult hounds, due to similarities to the human mouth. Two hounds served as study controls and had a surgically created cleft palate, but no subsequent repair. In the other eight hounds, the distraction osteogenesis device was used to close the cleft palate. In seven of the eight hounds that were treated, the researchers observed some degree of bony closure of the cleft; in five of them the cleft was closed completely with no side effects.

The Mayo Clinic researchers are currently working on perfecting the technique through study of the hounds with incomplete closure. The researchers also felt that the distraction osteogenesis device used in this study was too bulky, so they are now testing another more agile apparatus, says Dr. Moore. "We continue to work on improving this procedure in the laboratory," says Dr. Tibesar. "We are not ready to perform this yet on human patients, but we are hopeful that day will come soon."

Uldis Bite, M.D., Mayo Clinic plastic surgeon, co-director of Mayo’s Cleft Palate/Craniofacial Clinic and co-investigator in this research project, echoes this sentiment. "While this study shows great promise, it cannot currently be applied to the treatment of children with clefts of the lip and palate. We are still honing this technique in the laboratory. Meanwhile, it is important to know that in most children, the standard techniques of cleft lip and palate repair and careful multidisciplinary follow-up through our Cleft Palate/Craniofacial Clinic give excellent results."

Lisa Lucier | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Health and Medicine:

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>