Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology that could double the effectiveness of cancer drugs studied at Yale

24.01.2005


To identify the best treatment for recurrent ovarian cancer, researchers at Yale School of Medicine are studying a technology called the Yale apoptosis assay in combination with another technology called the ChemoFX assay, which could double the response rate to existing drugs.



In patients with recurrent ovarian cancer, it is often difficult to select an effective treatment because the tumor develops resistance to many drugs. Currently, physicians select a drug and must wait about six months to see whether it is effective on a particular patient.

"These two new assays will take the guesswork out of cancer treatment," said lead investigator, Gil Mor, M.D., associate professor of obstetrics and gynecology and reproductive sciences at Yale School of Medicine. "In patients with very limited time left to live, six months can feel like an eternity when they may have to start a whole new course of treatment if it proves ineffective."


Mor’s lab developed the Yale apoptosis assay based on a biological principle that when a drug is effective, it will induce apoptosis (cell death) in the cancer cell. If the cancer cell is resistant to a drug, apoptosis does not occur.

Mor said, "The Yale apoptosis assay will determine whether a drug kills the tumor. The ChemoFX assay will determine whether a drug stops tumor growth. Used together, both assays will distinguish drugs that can stop the growth of the tumor and/or kill the tumor. This was not possible before." "This test will help physicians predict whether a patient will respond to a specific drug, much like they test bacteria for sensitivity to antibiotics," Mor added.

The technology will be studied with various cancers, beginning with ovarian cancer. The clinical trial is a multi-center study for validation of the assays. Each assay will be evaluated independently and then in combination. The Yale research team partnered with Precision Therapeutics, Inc., (PTI) developers of the ChemoFX assay and is seeking patients from Yale and surrounding communities and from 10 other sites around the country. PTI exclusively licensed the Yale apoptosis assay from Yale. Recruitment for the study will be complete in June 2005, with results available about one year later. The Yale clinical trial is led by Thomas Rutherford, M.D., associate professor of gynecology at Yale School of Medicine.

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu

More articles from Health and Medicine:

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

nachricht Overdosing on Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>