Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology that could double the effectiveness of cancer drugs studied at Yale

24.01.2005


To identify the best treatment for recurrent ovarian cancer, researchers at Yale School of Medicine are studying a technology called the Yale apoptosis assay in combination with another technology called the ChemoFX assay, which could double the response rate to existing drugs.



In patients with recurrent ovarian cancer, it is often difficult to select an effective treatment because the tumor develops resistance to many drugs. Currently, physicians select a drug and must wait about six months to see whether it is effective on a particular patient.

"These two new assays will take the guesswork out of cancer treatment," said lead investigator, Gil Mor, M.D., associate professor of obstetrics and gynecology and reproductive sciences at Yale School of Medicine. "In patients with very limited time left to live, six months can feel like an eternity when they may have to start a whole new course of treatment if it proves ineffective."


Mor’s lab developed the Yale apoptosis assay based on a biological principle that when a drug is effective, it will induce apoptosis (cell death) in the cancer cell. If the cancer cell is resistant to a drug, apoptosis does not occur.

Mor said, "The Yale apoptosis assay will determine whether a drug kills the tumor. The ChemoFX assay will determine whether a drug stops tumor growth. Used together, both assays will distinguish drugs that can stop the growth of the tumor and/or kill the tumor. This was not possible before." "This test will help physicians predict whether a patient will respond to a specific drug, much like they test bacteria for sensitivity to antibiotics," Mor added.

The technology will be studied with various cancers, beginning with ovarian cancer. The clinical trial is a multi-center study for validation of the assays. Each assay will be evaluated independently and then in combination. The Yale research team partnered with Precision Therapeutics, Inc., (PTI) developers of the ChemoFX assay and is seeking patients from Yale and surrounding communities and from 10 other sites around the country. PTI exclusively licensed the Yale apoptosis assay from Yale. Recruitment for the study will be complete in June 2005, with results available about one year later. The Yale clinical trial is led by Thomas Rutherford, M.D., associate professor of gynecology at Yale School of Medicine.

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>