Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long Term Benefit To Amputees From EU Funded Project

24.01.2005


People who need artificial limbs to help with their day-to-day living are among those who are likely to benefit from a project funded with the help of €1.974 million (euros) from the Information Society Technologies area of the EUs Framework Programme.



The MOL SWITCH project set out to build a single-molecule DNA sequencing device and a MOLecular magnetic SWITCH that links the biological and silicon worlds. This nano-switch combines a biological motor and a moving magnetic bead that will help in the development of biosensors, ‘new generation’ prosthetics and provide a means to move artificial limbs by changing the mechanism of interfacing humans and computers.

“The Mol Switch Project is one of the most successful research projects I have been involved with”, says project co-ordinator Keith Firman, from the University of Portsmouth. “Our original aim was to produce a device that could link the biological world and the silicon world through the use of a biological molecular motor. As such it was always an ambitious project and that is why we sought funding from the EU. The concept was based on the idea of a simple molecular dynamo - the molecular motor would move a magnetic bead, attached to DNA, past a sensor, which would ’switch’ a sensor producing electrons that could switch a silicon device such as a computer. The potential use of such a device might be to activate artificial limbs from existing muscle of an amputee, to fly aircraft under high G-force, or as a generic biosensor - the uses are wide varying.


”We have already shown that we can use the motor to move the magnetic bead, that the movement is highly processive (in terms of how much DNA is moved in one go by the enzyme, before it releases and attaches again to move the DNA again - as required for such a device) and that we can also self-assemble the motor on a surface - allowing us to produce the device on a chip, over and over again (as required). However, we have also shown that this motor could be used in a wide range of devices (as a nanoactuator), from a biosensor through to a single-molecule, DNA sequencing device. The potential for such a nanoactuator is a cheap, biodegradable motor that can be used across a wide range of biochips to enable controlled movement of materials.”

The MOL SWITCH project brings together six partners from the UK, France, the Netherlands, Italy and the Czech Republic and is funded as part of the Future and Emerging Technologies (FET) Scheme within IST. This is designed to promote research that is of a long-term nature or involves particularly high risks, compensated by the potential of a significant societal or industrial impact. “This project is a perfect example of what FET was set up to do”, says Peter Walters, FP6UK National Contact Point for IST. “Its success will have a significant impact in a number of areas but especially for the hundreds of people who require artificial limbs to simply go about their daily lives.

“The current Framework Programme (FP6) runs until 2006 and organisations wanting free information on how to access some of the €19bn available should log on to http://fp6uk.ost.gov.uk or call central telephone support on 0870 600 6080.”

Dave Sanders | alfa
Further information:
http://fp6uk.ost.gov.uk

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>