Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long Term Benefit To Amputees From EU Funded Project

24.01.2005


People who need artificial limbs to help with their day-to-day living are among those who are likely to benefit from a project funded with the help of €1.974 million (euros) from the Information Society Technologies area of the EUs Framework Programme.



The MOL SWITCH project set out to build a single-molecule DNA sequencing device and a MOLecular magnetic SWITCH that links the biological and silicon worlds. This nano-switch combines a biological motor and a moving magnetic bead that will help in the development of biosensors, ‘new generation’ prosthetics and provide a means to move artificial limbs by changing the mechanism of interfacing humans and computers.

“The Mol Switch Project is one of the most successful research projects I have been involved with”, says project co-ordinator Keith Firman, from the University of Portsmouth. “Our original aim was to produce a device that could link the biological world and the silicon world through the use of a biological molecular motor. As such it was always an ambitious project and that is why we sought funding from the EU. The concept was based on the idea of a simple molecular dynamo - the molecular motor would move a magnetic bead, attached to DNA, past a sensor, which would ’switch’ a sensor producing electrons that could switch a silicon device such as a computer. The potential use of such a device might be to activate artificial limbs from existing muscle of an amputee, to fly aircraft under high G-force, or as a generic biosensor - the uses are wide varying.


”We have already shown that we can use the motor to move the magnetic bead, that the movement is highly processive (in terms of how much DNA is moved in one go by the enzyme, before it releases and attaches again to move the DNA again - as required for such a device) and that we can also self-assemble the motor on a surface - allowing us to produce the device on a chip, over and over again (as required). However, we have also shown that this motor could be used in a wide range of devices (as a nanoactuator), from a biosensor through to a single-molecule, DNA sequencing device. The potential for such a nanoactuator is a cheap, biodegradable motor that can be used across a wide range of biochips to enable controlled movement of materials.”

The MOL SWITCH project brings together six partners from the UK, France, the Netherlands, Italy and the Czech Republic and is funded as part of the Future and Emerging Technologies (FET) Scheme within IST. This is designed to promote research that is of a long-term nature or involves particularly high risks, compensated by the potential of a significant societal or industrial impact. “This project is a perfect example of what FET was set up to do”, says Peter Walters, FP6UK National Contact Point for IST. “Its success will have a significant impact in a number of areas but especially for the hundreds of people who require artificial limbs to simply go about their daily lives.

“The current Framework Programme (FP6) runs until 2006 and organisations wanting free information on how to access some of the €19bn available should log on to http://fp6uk.ost.gov.uk or call central telephone support on 0870 600 6080.”

Dave Sanders | alfa
Further information:
http://fp6uk.ost.gov.uk

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>