Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibody treatment partially reverses nerve damage in Alzheimer disease

21.01.2005


Researchers from Washington University School of Medicine have shown that an antibody treatment administered to the brain surface in mice with Alzheimer disease is capable of rapidly reversing disease-related structural nerve damage. The study will appear online on January 20 in advance of print publication in the February 1 issue of the Journal of Clinical Investigation.

One of the many hallmarks of Alzheimer disease is the presence of deposits or "plaques" made up of amyloid-beta peptide (Abeta) in areas of the brain responsible for memory and cognition. While several approaches to decreasing Abeta production or increasing its clearance from the brain are being studied as potential treatments for Alzheimer disease, it is not known whether, upon clearance of Abeta, if significant structural damage to nerves is reversed, remains, or continues.

Using a mouse model of Alzheimer disease in which a subset of neurons and Abeta in the mouse brain express colored fluorescent proteins that can be visualized in the living animal under a microscope, David Holtzman and colleagues administered an anti- Abeta antibody treatment and monitored the structural changes to nerves within the mouse brains. They observed that following treatment of the brain surface, there was a significant decrease in the amount of structural nerve damage after only 3 days. The study suggests that Abeta deposition leads to ongoing nerve damage and that upon reducing buildup of Abeta in the brain, this structural damage is rapidly reversible.



The imaging technique used will also be a valuable tool for the study of the progression of Abeta deposition in the brain during experimental models of Alzheimer disease and to also assess the effectiveness of treatments including the anti-Abeta antibody treatment described here.

Brooke Grindlinger | EurekAlert!
Further information:
http://www.the-jci.org
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>